1) B-valued random field
B-值随机滑动
1.
In this paper,we discuss the complete convergence for the moving sum of B-valued random fields,and by it we characterize the geometry property of Banach space.
讨论B-值随机滑动和完全收敛,并由此刻画了Banach空间的几何性质。
2) B-valued random element
B值随机元
1.
Moment complete convergence for B-valued random elements;
B值随机元序列的矩完全收敛性
2.
Convergence for sequence of B-valued random elements;
B值随机元序列的收敛性
3.
The author proves, at first, that the convergence almost-everywhere for a sequence of B-valued random elements is equivalent to its convergence almost-uniformly and then, gives a theorem of Lusin–type declaring that every B-valued random element can be approximated almost uniformly by a sequence of continuous functions.
本文首先证明了B值随机元序列几乎处处收敛与几乎一致收敛的等价性,然后用它来证明一个关于连续函数逼近B值随机元的Lusin型定理。
3) B valued random fields
B值随机场
1.
Weak law of large numbers and convergence rate for B valued random fields;
B值随机场的弱大数定律及收敛速度
4) B-valued random elements
B-值随机元
1.
In this paper, we study application of the small ball condition in the law of the iteratedn Logarithm with B-valued random elements, and we give some results of the law of the iterated Logarithm for i.
本文讨论小球条件在B-值独立同分布随机元迭对数律中的应用,并给出了B-值随机元迭对数律的一些结论。
5) B valued random vector
B值随机变元
6) alued random vectors
B值随机向量
补充资料:随机数和伪随机数
随机数和伪随机数
random and pseudo-randan numbers
随机数和伪随机数【喇间佣1 al川牌”山一喇闭..m.山娜;cJI了,a如曰e”nce,口oc月卿成.以叹“c月a】 数亡。(特别,二进制数:。),其顺序出现,满足某种统计正则性(见概率论(probability Uleory)).人们是这样区别随机数(mndomn切mbe比)和伪随机数(PSeudo一mn由mn切mbe岛)的,前者由随机的装置来生成,而后者是用算术算法构造的.总是假设(出于较好或较差的理由)所得(或所构造)的序列具有频率性质,这些性质对于具有分布函数F(z)的某随机变量心独立实现的一个序列来说是“典型的”;因此人们称作根据规律F(习分布的(独立的)随机数.最经常使用的例子为:在区间【O,l]上均匀分布的随机数亡。,尸(亡。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条