1) Feller property
Feller性
1.
In this paper,the monotonicity,duality and Feller property of weighted Markov branching processes are studied and some necessary and sufficient conditions for the minimal Q-function being an monotone or dual transition function are obtained,where Q is a weighted Markov branching q-matrix.
研究加权分支过程的单调性,对偶性以及Feller性质,并得到了加权分支q矩阵的最小Q函数成为单调或对偶时的充要条件,特别是得到了当Q既不对偶也不单调时的Feller准则。
2.
And the Feller property and monotonicity are obtained.
研究对偶加权Markov分支过程的正则性、唯一性、单调性和Feller性,得到了判断这些性质的充要以及充分或必要条件。
3.
Feller property and strong Feller one are significant in the study of Markov processes.
Feller性与强Feller性在Markov过程的研究中有着重要意义。
2) Feller continuity
Feller连续性
1.
With Feller continuity and Foster-Lyapunov drift condition the invariant probability measure is then proved to exist.
借助Feller连续性及Foster-Lyapunov漂移条件证明了不变测度的存在性。
3) Feller property
Feller性质
1.
stochastic sub-monotony and Feller property,are discussed.
并且进一步讨论了该积分半群的次随机单调性和Feller性质。
4) strong Feller property
强Feller性
1.
its strong Feller property still holds in some cases (see Chapter 5).
Feller性与强Feller性在Markov过程的研究中有着重要意义。
5) Feller kernel
Feller核
6) Feller operator
Feller算子
1.
The best asymptotic constant of generalized Feller operators;
广义Feller算子的最佳渐近常数
2.
We give an ergodic theorem for the dual of Feller operator.
本文给出关于Feller算子的对偶算子的一个遍历定理。
补充资料:连续性与非连续性(见间断性与不间断性)
连续性与非连续性(见间断性与不间断性)
continuity and discontinuity
11an父ux泊g四f“山。麻以角g、.连续性与非连续性(c。nt,n琳t:nuity一)_见间断性与不间断性。and diseo红ti-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条