1) Lundberg bound
Lundberg界
1.
This paper gives a close form of the ruin probability of a compound Poisson surplus process with its individual claim amount distributing as a mixing of two exponentials, and the Lundberg bounds are studied under this condition.
本文给出了复合Poisson盈余过程在其个体理赔量服从两个指数分布的混合 分布时破产概率的显示解,并研究了此情形下破产概率的Lundberg界。
2.
The general expression and the Lundberg bound of the ruin probab.
首先利用向前马尔可夫技巧使此风险过程成为齐次马尔可夫过程,然后利用逐段决定马尔可夫过程(PDMP)中的鞅方法,得到本文风险模型中鞅的形式,继而求得索赔额分布为一般离散分布的破产概率的一般表达式,并得到破产概率的Lundberg界,这里用到了测度变换的思想,从中可以看出调节系数的重要作用。
2) Lundberg bounds
Lundberg界
1.
By an application of the key renewal theorem in the case of the lattice distribution we derive Lundberg bounds , Cramer-Lundberg approximations to the ruin probability and finite-horizon Lundberg inequalities.
本文利用经典风险模型的思想,对索赔到达时间间隔服从亏时几何分布的连续时间风险模型做了进一步的研究,应用关键更新定理(格点分布的情形),得到了破产概率的Lundberg界,Cramér-Lundberg逼近以及有限时间破产概率的Lundberg不等式。
3) Lundberg upper bounds
Lundberg上界
1.
Using an inductive approach,the Lundberg upper bounds for the ultimate ruin probability are shown.
利用递归的技巧,给出最终破产概率的Lundberg上界。
2.
the lundberg upper bounds, ultimate ruin probability, the non-ruin differential and integral function, the non-ruin probability under exponential distribution, the non-ruin differential model with limited time.
研究保费收取过程是一个随机过程的双险种风险模型,得出了Lundberg上界、最终破产概率、不破产所满足的微积分方程、索赔服从指数分布的不破产概率、有限时间不破产所满足的微积分方程。
4) Lundberg upper bound
Lundberg上界
1.
Lundberg upper bound of the last probability of ruin with discrete model;
离散模型的最终破产概率的Lundberg上界
2.
Derives the last probability of ruin and Lundberg upper bound in the condition of initial surplus of the insurance company is u(u≥0) by a discretionary stopping and martingale.
利用停时和鞅论技巧导出了保险公司在初始盈余为u(u≥0)的条件下的最终破产概率及其Lundberg上界,并结合实例说明它的应用。
3.
Finally the Lundberg upper bound for ruin probability is obtained.
利用余额过程在索赔时刻具有强马氏性,得到最终破产概率的积分方程,最后推出最终破产概率的Lundberg上界。
5) Lundberg exponential bound
Lundberg指数上界
6) Lundberg inequality
Lundberg不等式
1.
The Lundberg inequality for ruin probability in discrete-time model;
离散时间模型下破产概率的Lundberg不等式
2.
Then the common formula and Lundberg inequality are obtained in terms of some techniques from martingale theory.
研究了一类带干扰的多险种离散风险模型,两索赔额均为二项随机序列,两保单到达均为Poisson随机序列,应用鞅方法得出了最终破产概率的一般表达式,Lundberg不等式,以及有限时间内破产概率的一个上界估计。
3.
Based on the classic risk model,this paper studies the situation where premium collection times are negative binomial random sequence and the premium of insurance policy is random variable,while the claim for compensation is a compound Poisson process,and obtains the ruin probability and Lundberg inequality.
在经典的风险模型的基础上,考虑保费收取次数为负二项随机序列且保单的保费为随机变量,而索赔过程为复合Poisson过程时的情形,得到了破产概率以及Lundberg不等式。
补充资料:发光地寄色界无色界天乘
【发光地寄色界无色界天乘】
谓三地菩萨,明修八禅定行,同于色界四禅,无色界四空处,故云发光地寄色无色界天乘。(八禅定者,色界、无色界各四禅定也。四禅者,初禅、二禅、三禅、四禅也。四空者,即空处、识处、无所有处、非非想处也。)
谓三地菩萨,明修八禅定行,同于色界四禅,无色界四空处,故云发光地寄色无色界天乘。(八禅定者,色界、无色界各四禅定也。四禅者,初禅、二禅、三禅、四禅也。四空者,即空处、识处、无所有处、非非想处也。)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条