1) integral Ricci curvature
积分Ricci曲率
1.
The paper stated here discussed the Sobolev embedding theorem on completemanifolds withintegral Ricci curvature bounds and generalizedthe case withlower Ricci cur-vature bounds.
讨论了在具有积分Ricci曲率界的完备流形上的Sobolev嵌入定理,并最终得到了一个Sobolev嵌入不等式,这是对在Ricci曲率有下界情形之下的Sobolev嵌入定理的一个推广。
2) Ricci curvature
Ricci曲率
1.
A uniformation theorem on complete noncompactn-dimensional(m=2n) Khler manifold with nonnegative and bounded Ricci curvature is studied,if the conditoins as follow are satisfied:① section curvature kr(x0)≥-c/(1+r2);②‖f‖p≤ C0‖▽ f‖q,f∈C∞0(M),1≤q≤n,1/p=1/q-1/m;③ ∫_M Rnic<∞.
现得到完备非紧且Ricci曲率非负有界n维(m=2n)的Khler流形M上的一个单值化定理。
2.
Let M be an n(n≥3)-dimensional complete spacelike hypersurface in de Sitter space, S~n+11(1)with constant mean curvature H and constant scalar curvature, it also has nonegative Ricci curvature, then it is isometric to a sphere or an euclidean space or a hyperbolic cylinder.
设M为deSitter空间Sn+11(c)中的完备类空超曲面,具有常平均曲率向量和常数量曲率以及非负Ricci曲率,则它与球空间、欧氏空间或者双曲柱面等距。
3.
A property of certain harmonic maps of Ricci curvature which have positive low bound on compact Riemann manifolds,as well as the Eigenvalue estimation problem of harmonic maps are discussed,we get a condition that a harmonic maps is a totally geodesic map.
主要讨论Ricci曲率具有正下界的紧Rieman流形M上的调和映射 。
3) bi-Ricci curvature
双Ricci曲率
1.
The paper shows that a complete, noncompact, oriented and strongly stable hypersurface M with constant mean curvature H in a (n+1)-dimensional complete oriented manifold N~(n+1) with bi-Ricci curvature,being not less than -n~2H~2 along M, admits no nontrivial L~2 harmonic 1-forms.
设M为(n+1)维流形N中完备、非紧、定向的、具有常平均曲率H的强稳定超曲面,文中证明了若N的双Ricci曲率沿M不小于-n2H2,则M上不存在非平凡的L2调和1-形式。
4) Ricci principle curvature
Ricci主曲率
5) Ricci-isotropic curvature
迷向Ricci曲率
6) Nonnegative Ricci curvature
非负Ricci曲率
1.
The topology of complete manifolds with nonnegative Ricci curvature and large volume growth;
具非负Ricci曲率和大体积增长的完备流形的拓扑(英文)
2.
For an open complete Riemannian manifold with nonnegative Ricci curvature,the present paper discusses the relation between the topology and the volume growth.
本文讨论了具非负Ricci曲率的完备非紧黎曼流形的体积增长与其拓扑性质之间的关系。
3.
By comparing the volume growth order of the manifold itself to that of its universal covering space, the paper proves that every three-dimensional with nonnegative Ricci curvature and (1+δ)-order volume growth in strict sense must be contractible provided that its universal covering is finite.
本文研究了三维完备非紧具非负Ricci曲率的黎曼流形的几何拓扑性质。
补充资料:Nina ricci
莲娜丽姿的服装以别致的外观、古典且极度女性化的风格深受优雅富有的淑女青睐,赢得良好声誉。直至今天,经历了六十多年风雨的莲娜丽姿品牌依然是时装领域中最响亮的名字之一。直接把布缠在模特儿的身上直接裁剪就是莲娜丽姿首创的。
简介: nina ricci莲娜丽姿1883年出生于意大利,1932年在法国巴黎和她的儿子robert ricci罗伯特.里奇一起创立莲娜丽姿时装公司,60多年来,一直以高贵经典的风格称雄法国时装界。最近,更网罗了原来prada的设计师在旗下,颇得好评。而今天遍布全世界130多个城市的专卖店,更显示了nina ricci的强大号召力。 现在的莲娜丽姿已是法国最大的时装公司之一。经营高级女装、精品时装、男装系列、香水系列、保养彩妆用品、皮件等。
标识:简洁的“nina ricci”、“paris”和手写体的“monsieur”的字体组合,非常经典。
其他产品:领带,丝巾、配饰、香水等
国内销售地点:北京国际贸易中心、上海新锦江大酒店、大连富丽华大酒店
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条