1) Integral absolute mean curvature
积分绝对平均曲率
1.
Integral absolute mean curvature is introduced to describe average curving of an orientable closed surface.
引入积分绝对平均曲率来描述可定向闭曲面的平均弯曲程度。
2) mean absolute curvature
平均绝对曲率
1.
Geometric data of ellipse in hyperbolic space are considered,such as perimeter and mean absolute curvature.
在双曲空间中,对椭圆的周长及平均绝对曲率做出细致考察。
2.
The goal is, in n-dimensional space forms, to compare the mean absolute curvature of a closed curve C with that of a big circle in the boundary of a convex geodesic ball containing the curve C.
在n维空间型中 ,比较了任一闭曲线和包含此闭曲线的凸测地球边界上一个大圆的平均绝对曲率 。
3) integral of mean curvature
平均曲率积分
4) integral of square of mean curvature
平均曲率平方积分
5) protested body the mean curvature
投影体平均曲率积分
6) absolute first curvature
绝对曲率
补充资料:平均曲率
平均曲率
mean cunafure
平均ee率[~e一臼此;epe刀田皿.印棚3.a],3维Euclid空间R’中曲面小2的 该曲面点A处主曲率(prmc币alcun瓜ture)k,与k:和之半: k,+k, H(A、二一_ 2对于EucUd空间R”+’中的超曲面。”,此公式可推广为: k,+…+k_ H‘A、二一 n其中k‘(j=l,…,n)是所给超曲面在点A任中”处的主曲率. R3中曲面的平均曲率可通过该曲面的第一和第二基本形式的系数表示: 1 LG一ZMF+NE H(A)二之二二二‘一二二七二一二二二全匕 2 EG一F乙其中E,F,G是在点A。中2处计算的第一基本形式(肠tfi功dsl拙ntal fbxm)的系数,L,M,N是该点处第二基本形式(second加次ha众浏园form)的系数.在所给曲面由方程Z=f(x,y)定义的特殊情形,平均曲率可用下述公式计算: H(A)= 卜十图’)典一2李李-业二、「1+国’}斗 L\oy/J ox一ox oy口x口yL\口x/J口y‘ 「1、r李、’十了鱿、’1’‘, L‘\刁x/’\a夕/」此公式推广到R”干’中由方程x。+、=f(x,,…,x。)定义的超曲面中”如下: H(A), 女rl+。2-位Z力2〕里本一争皿』五一望立- ‘习L一\口工‘/」dx了‘.界,口x‘dxz dx,dxz (l+p’)’12其中 ,2一}gtadf}2一r李、’+…、{共)’. ·扩一\似,/\叔。/ 几.A.C”江opoB撰【补注l对于n维E珑lid空间中余维数为”一功>1的m维子流形M,平均曲率推广为平均曲率法向量(n笼习n cun旧t切吧nont自1)概念: 、,一生”犷「TrA(。‘、1。. m]=!其中e:,·,e。一。是M在p处的法空间(见法空间(曲面的)(nom以lsP毗(to as切成‘e))的标准正交标架,A( ej):T,(M)~T,(M)(T,(M)为M在p处的切空间)是M在p处沿e,方向的形状算子(s恤pe oPemtor),它与M在p处的第二基本张量V由“
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条