说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 半交换群
1)  meta-abelian group
半交换群
2)  commutative semi-group
交换半群
1.
In this paper,a kind of graph structure of a commutative semi-group S with zero element is defined and studied.
在交换半群上定义了一种图结构 ,并对相应的图的性质进行了描述。
2.
In this paper,a new commutative semi-group is established,and the results of the papers "the Expression Form of a Commutative Semi-group"and "the Extension and Application of Commutative Semi-group" are genelized and strengthed.
建立了一类新的交换半群,对《一个交换半群的元素的表示形式》、《一个交换半群的推广与应用》两文中半群的元素表示形式和结果进行了推广与加强。
3.
Based on the number set,a new commutative semi-group is established in the integer number and extended in number fields of rational number,real number and the complex number.
在数集的基础上,在整数域上建立了一个新的交换半群,并在有理数域、实数域和复数域上进行了推广;作为应用,讨论了其元素的表示形式。
3)  commutative semigroup
交换半群
1.
Results: A series of equivalent conditions about judging p-semisimple element in BCH-algebra are given,and it proves that a commutative semigroup may be induced by a p-semisimple element in BCHalgebra.
结果:给出了p-半单元的一系列等价条件,证明了由每一个p-半单元可以诱导出一个交换半群,并给出了该交换半群成为交换群的条件。
2.
This paper considers the structure of free product of commutative semigroups and gives the structure of their maximal semilattice quotient and Archimedean components.
讨论交换半群的自由积的构造 ,给出其极大半格商及阿基米德分量的构
3.
In this paper,we first provide the existence theorems of fixed points for commutative semigroups of nonexpansive mappings in general Banach spaces.
主要在一般Banach空间中给出了非扩张交换半群不动点存在性定理,推广了Suzuki和Takahashi等人的相关工作。
4)  commutative monoid
交换幺半群
1.
Finally, it is proved that a commutative monoid can be constructed by every generalized a-associative BCH-algebra.
引入了偏序BCH-代数和广义a-结合BCH-代数的概念,很自然地在偏序BCH-代数中建立了一种偏序关系;最后,证明了由每个广义a-结合BCH-代数可以构造出一个交换幺半群。
2.
A self-mapping is defined in the partially ordered BCH-algebra,it is proved that a commutative monoid may be constructed by the set made in product of finite self-mappings about product of mapping,And properties of inverse elements of the commutative monoid are researched.
在偏序BCH_代数中定义了一种自映射,证明了这些自映射的有限乘积全体构成的集合关于映射的乘积构成一个交换幺半群,并对交换幺半群可逆元的性质进行了研究。
5)  (m,n)-commutative semigroup
(m.n)-交换半群
6)  fuzzy commutative subsemigroup
Fuzzy交换半群
补充资料:交换群
      其运算适合交换律的群,或称阿贝尔群。挪威数学家N.H.阿贝尔在讨论高次方程时曾用到过有限交换群,为了纪念这位著名数学家,而常把交换群称作阿贝尔群。交换群是一般群论中的一个独特分支。在拓扑学和代数学中常常构造一些交换群,作为讨论问题的工具,例如,拓扑学中的基本群、同调群、代数学中的布饶尔群等等。交换群论与代数拓扑、模论、同调代数、环论等有密切的联系。
  
  交换群作为特殊类型的群,也有诸如元素的阶、群的阶、子群、商群等概念以及相应的结果(见群)。在交换群中,子群和正规子群是相同的概念,习惯上把交换群的运算记作加法,用0表示群的单位元素,用-α表示元素α的逆元素,用nα表示α的n次幂,交换群的直积改称为直和。
  
  有限非交换群有复杂的结构,至今还不完全清楚。然而有限交换群却有着非常简单的结构。1878年,F.G.弗罗贝尼乌斯等证明了下面的基本定理:任一有限交换群G可表成有限个且阶为素数幂的循环群的直和,即,其中k是自然数,Gi 是循环群且,pi是素数,ni是自然数,并且数k和是由群G完全确定的。这个定理是一个具有典型意义的结构定理。关于有限交换群的子群、商群、自同态等问题,都可以利用这个定理去解决。因而,交换群理论的主体是研究无限群。
  
  对于具有有限个生成元的无限交换群G都可表成有限个循环群的直和:其中Gi是循环群且,pi是素数,ni是自然数。而Fj都是无限循环群;且非负数k,s以及由群G惟一确定。这是对于有限交换群基本定理的一个完满的推广。
  
  以上两个定理是一系列研究的起点,启示人们考虑还有哪些群类(更一般地,模类)可表为循环群(循环模)的直和,这样的群类具有什么性质,等等。
  
  n个(有限个或无限个)无限循环群的直和G,称为自由交换群或自由群,其个数(基数)n是群的不变量,称为自由群G的秩。自由群在交换群理论中所占的地位,与非交换自由群在一般群理论中的地位相当,即任意一个群A总可看成自由群的同态像。为此,只要取定群A的一个生成元集,并相应地取符号集{xα,α ∈I},以xα为生成元可作无限循环群α>,再作它们的直和即得自由群G=嘰α>。G中元素都可惟一写成有限和形式是整数。因此,可作映射
  易知,φ是自由群G到群A上的同态映射。还可以证明,自由群的非零子群仍是自由群。
  
  若干个循环群的直和G具有与自由群类似的一些性质。例如,这样的直和G的子群,也是一些循环群的直和;当把G表成无限循环群与阶为素数幂的循环群的直和时,这种表法在同构意义下是惟一的,即其中无限循环群的个数与阶为素数幂的循环群个数都由G本身惟一确定。
  
  每一元都是有限阶(无限阶)的交换群,称为周期群(无扭群)。既含有有限阶元又含有无限阶元的群,称为混合群。每一元的阶都是素数p的幂的群,称为准素群或p准素群。
  
  除群是个重要的而且已被完全刻画了的群类。所谓除群G,是指对于任意自然数n和任意元素α,方程nx=α都有解的群G。不难验证,全体有理数关于数的加法作成一个无扭除群;而对于固定的素数p及所有自然数n,一切pn次单位根的全体关于复数的乘法作成p准素群P,它也是除群,并记作p型群。任意除群都是若干个有理数加群和若干个p型群(对某些素数p)的直和。R.贝尔指出除群具有如下特性:若群G含有一个除子群h(即h本身是除群),则h必是G的直和项,即有子群K使G=h嘰K。反之,具有如下性质的群h必是除群:若h是群G的子群,则h必是G的直和项。除群是模论中重要的入射模概念的一个原型。不含除子群的群,称为简约群。对任意交换群的研究可归结为对简约群的研究。
  
  交换群G中有限阶元素的全体可作成一子群h,称为G的周期子群,而商群G/h是无扭群。周期群G中阶为素数p之幂的元素的全体G(p)是G的子群,且有(p取遍所有素数)。因此,周期群的研究可归结为准素群的研究。设G是p准素群,对自然数n规定。易知,pnG是子群,且有。设非零元素α∈G,若有n使得α∈pnG,而G,就把n称为α的高。否则,就说α的高是∞。因此,α的高就是使方程pmx=α在G中有解的最大自然数m(或∞)。高是交换群论中最重要的概念之一。除群中每一元素的高都是∞,而循环群的直和中则没有高为∞的元素。
  
  重要的普吕菲尔定理给出一些可表为循环群的直和的某些群类:①若G是p准素群且有n使pnG={0},则G是循环群的直和。②若G是可数(即|G|是可数基数)p准素群,但是它不含高为∞的元素,则G是循环群的直和。
  
  含有高为∞的元素的群不可能表成循环群的直和,对此需另寻刻画方法。H.厄尔姆在20世纪30年代作出了影响深远的贡献。他对p准素群G引入了定义在序数集上取值基数的一个函数??G(α) (后来称之为厄尔姆不变量),给出了重要的厄尔姆定理:两个可数p准素群G和h是同构的,当且仅当它们有相同的厄尔姆不变量,即对所有的序数α,有??G(α)=??H(α)。近年来,这个定理在I.卡普兰斯基和E.沃克等人手中得到进一步的推广。例如,对于一类所谓完全投射群,相应的结论也成立。
  
  对于无扭群,秩是一个最基本的概念,它类似于向量空间的维数。如果对于群G的有限个元素α12,...,αn有不全是零的整数k1,k2,...,kn,使得,就说α12,...,αn是相关的,否则就说是无关的。如果G的一个子集S的任意有限子集都是无关的,就说S是无关的。群G的所有极大无关子集具有相同的基数,称为G的秩。秩为1、2的无扭群的结构基本上已清楚,例如,秩为1的无扭群恰为有理数加群的一切子群。其他一些无扭群也作过研究,例如完全分解无扭群以及它们的纯子群。总之,对无扭群的研究远不如对周期群的研究深入。
  
  混合群G总可以看成周期群A借助无扭群B的扩张。最初的一些研究,常集中于如下的问题:在什么条件下这个扩张G是可裂的,即有G=A嘰B成立。R.贝尔给出一个结果:若混合群G的周期子群A是一些除群和一些阶小于某固定n的循环群的直和,则G是可裂的。近年来,I.卡普兰斯基、R.B.沃菲尔德等找到了一些方法,能从整体上讨论混合群,从而开创了一个新局面。
  
  任一交换群都可看成整数环上的模,为此只需引入模运算n·g=g+...+g(n个)即可。交换群作为特殊的模,为一般模论提供了大量的概念和定理的原型,例如张量积就是其中之一。交换群G的自同态对应全体End(G)关于自同态的乘法和加法作成一个环,而交换群G可以自然地看成End(G)的任意子环上的模。交换群、模论、环论是互相密切联系的。
  
  

参考书目
   I.Kaplansky,Infinite Abelian Groups,Revised ed.,Univ.of Michigan Press, Ann Arbor, 1969.
   L.Fuchs,Infinite Abelian Groups,Vol.1~2,Academic Press,New York,1970,1973.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条