1) G-differentiable norm
G-可微范数
2) G-differentiable
G-可微
1.
In ordered topological vector spaces,by applying characterizations of G-differentiable function and Theorem 4.
在序拓扑向量空间中,运用G-可微函数的性质和文献[1]中的定理4。
3) k-G differentiability
k-G可微
4) Gateaux-differentiability
G可微性
5) uniformly Gateaux differentiable norm
一致Gateaux可微范数
1.
Let C be a nonempty closed convex subset of a real Banach space X which has a uniformly Gateaux differentiable norm and T be a nonexpansive self-mapping of C with F(T)≠0: Assume that {xt} converges strongly to a fixed point z of T as t→0, where xt is the unique element of C which satisfies xt = tu + (1-t)T for arbitrary u←C.
设C是具有一致Gateaux可微范数的实Banach空间X中的一非空闭凸子集,T是C中不动点集F(T)≠0的一自映象。
6) differentiable norm
可微范数空间
补充资料:Luxemburg范数
Luxemburg范数
Luxemburg nonn
L峨曰血叱范数〔I一血叱~;J如盆c服6yP住肋p-Ma] 函数 ,‘x!.(M,一、{*:*>o,丁、(,一’x(:))‘:‘1}, G这里M(u)是关于正的u递增的偶凸函数, 怒“一’M(u)一忽u(M(u))一,一0,对“>0,M(“)>0,且G是R”中的有界集.此范数的性质曾由W.A.J.h以油比飞〔11作了研究.L~b鸣范数等价于O正ez范数(见0口厄空间(C旧允2 sP创芜)),且 I{x}I(,)簇1 lx}I,蕊2 11 x 11(、).如果函数M(u)和N(u)是互补(或互为对偶)的(见O市口类(Or比zc地”‘、则 ,,·,,(一sun{)·(!,,‘!,“!:,,,,,《一‘,}·如果z‘(t)是可测子集E CG的特征函数,则 !l:二11‘M、-一下尖二一. ““启”‘川M一’(l/n篮‘E)’
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条