说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 正交多项式小波
1)  Orthogonal polynomials wavelets
正交多项式小波
2)  orthogonal Polynomial Filter
多项式正交滤波器
3)  orthogonal polynomials
正交多项式
1.
A new method of plane magnetic field fitting based on orthogonal polynomials;
用正交多项式进行平面磁场拟合的一种新方法
2.
Application to harmonics statistic with orthogonal polynomials series based on least squares method;
基于最小二乘法的正交多项式级数在谐波估计中的应用
3.
Application of orthogonal polynomials with constraints to fitting of stage-discharge relation;
加约束正交多项式在水位流量关系拟合中的应用
4)  orthogonal polynomial
正交多项式
1.
Applications of orthogonal polynomials in caculating GPS orbit with broadcast ephemeris;
正交多项式在广播星历拟合GPS卫星轨道中的应用
2.
Application of fitting orthogonal polynomial in standard compaction test;
土工击实试验数据处理的拟合正交多项式方法
3.
Fuzzy control based on Chebyshev orthogonal polynomial prediction;
基于Chebyshev正交多项式预测的模糊控制方法
5)  orthogonal multiwavelets
正交多小波
1.
Improving the signal noise ratio of seismic records by orthogonal multiwavelets transformation;
用正交多小波变换提高地震记录的信噪比
2.
A new method for construction of orthogonal multiwavelets functions
一种新的正交多小波函数的构造
3.
The necessary and sufficent conditions for the existence of orthogonal multiwavelets with short supports are given first, and then a concrete construction algorithm is presented.
给出一种计算简便的构造正交多小波的新方法,这种正交多小波是由给定的具有4系数的紧支撑正交多尺度函数构造出来的,并且给出与之对应的短支撑正交多小波存在的充分必要条件,然后得到具体的构造算法。
6)  Orthogonal multi wavelets
正交多小波
1.
The paper elaborated on the principle of noise suppression processing by using GHM orthogonal multi wavelets for seismic signal and gave real examples to show the effectiveness of the method.
用正交多小波压制地震信号的随机噪声 。
补充资料:Fourier级数(关于正交多项式的)


Fourier级数(关于正交多项式的)
rthogonal polynomials) Fourier series (in

F血的er级数(关于正交多项式的)【I饭的er sedes(加川如卿.1州ylm血‘);。”晓p,八(no opTOroHa‘-眼M,。oro呱。aM)] 形式为 艺。。p。(l) 月之0的级数,其中{尸。}是在区间(a,b)上关于权函数h正交的多项式系(见正交多项式(ort加即间即妙-no而alS)),系数{。。}由公式 b a。一J儿(*)f(*)尸。〔二)、(2)给出.这里,f属于函数类L:=L之f(a,b),h],即它的平方在正交性区间(a,b)上关于权函数h可和(玫比g比可积). 对任意正交级数,(l)的部分和{s。(x,f)}是f的依L:度量的最佳逼近,且a,满足条件 浊a。=0·(3)在证明级数(l)在一个点x或在(a,b)中的某个集合上收敛时,通常利用等式f(x)一s。(戈,f)=拜。汇a。(甲二)只十;一a。+:(价二)只(x)l,其中{a。(叭)}是辅助函数毋二的Founer系数,对于固定的x, 川门=力匕2二丛兰上.。。(。.bl. X一汇而拼。是由Cll南.川回{抽均.以公式(Ch由toffel一Dar·boux fonn“巨)给出的系数.如果正交性区间[a,b]有限,毋乒几且序列笼只圣在给定的点x有界,则级数(l)收敛到值f(x). 对于f6L一L:l(a,b),h」,即在区间(a,b)上关于权函数h可和的函数类,也可定义系数(2).对有限区间!a,b],如果f“L,【(a,b),hl且序列{凡}在整个区间[a,b]上一致有界,则条件(3)成立.在这些条件下,在点x可a,bJ处如果叭〔L,I(a,b),h],则级数(l)收敛到值f(x). 设A是区间(a,b)中的某个集合,序列王尸。}在A上一致有界,设B=[a,b〕\A,记L,(A)‘L,【A,川是在A上关于权函数h的p次可和的函数类.如果对固定的x已Al,有叭任L,(A)及叭。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条