1) Gegenbauer orthogonal polynomials
Gegenbauer正交多项式
1.
By using of Gegenbauer orthogonal polynomials,an effective numerical method for the reliability analysis of double random Duffing system with large coefficient of variation is presented.
基于参数α=2的Gegenbauer正交多项式展开方法,研究了大变异系数情况下复合随机强Duffing体系的可靠性分析问题。
2) Gegenbauer polynomial
Gegenbauer多项式
1.
At first, the stochastic Duffing system is transformed into its equivalent deterministic nonlinear system by the Gegenbauer polynomial approximation.
借助Gegenbauer多项式逼近理论,将随机Duffing系统转化为与其等效的确定性非线性系统。
3) Gegenbauer polynomial approximation
Gegenbauer多项式近似
4) orthogonal polynomials
正交多项式
1.
A new method of plane magnetic field fitting based on orthogonal polynomials;
用正交多项式进行平面磁场拟合的一种新方法
2.
Application to harmonics statistic with orthogonal polynomials series based on least squares method;
基于最小二乘法的正交多项式级数在谐波估计中的应用
3.
Application of orthogonal polynomials with constraints to fitting of stage-discharge relation;
加约束正交多项式在水位流量关系拟合中的应用
5) orthogonal polynomial
正交多项式
1.
Applications of orthogonal polynomials in caculating GPS orbit with broadcast ephemeris;
正交多项式在广播星历拟合GPS卫星轨道中的应用
2.
Application of fitting orthogonal polynomial in standard compaction test;
土工击实试验数据处理的拟合正交多项式方法
3.
Fuzzy control based on Chebyshev orthogonal polynomial prediction;
基于Chebyshev正交多项式预测的模糊控制方法
6) orthogonal polynomial regression
正交多项式回归
1.
The method of orthogonal polynomial regression was used for regression modeling,and then the regression equations and regression coefficients were tested for significance.
采用正交多项式回归分析法建立回归模型,并对回归方程和回归系数进行显著性检验。
2.
Composite powder was optimized by orthogonal design and orthogonal polynomial regression using surface hardness of surfacing layer as testing index, and wear experiments of surfa cing layer with different compositions were carried out on the type MM-200 wear test equipment.
以堆焊层表面硬度值为正交试验指标,利用正交设计及正交多项式回归分析对复合粉末进行优化设计。
补充资料:Gegenbauer变换
Gegenbauer变换
Gegenteuer transform
G魂印加峨变换〔(鞠娜枷峨如留孙恤;rere丽ay邓a即eo6pa”.扭..e] 函数F(t)的积分变换(jn魄间让别旧场皿)T{F(t)}: +1 T{;(:)}一J(1一,2),一‘Zc:(‘)r(:)‘,一,:, 一1 p>一告,。一。,l,2,·…这里,c万是诀笋如旧多项式(G吧比加叮训l,IOm-此).如果一个函数能够按G电enlxmer多项式展开为广义Fou幻ler级数,则下列反演公式成立: 。“、_寻n!(n+p)r,(p)2,p一’。,‘,、。 F(t)=)二二二二‘二‘‘二‘二‘一二止‘二一-七二(t)_J二, ”场二r(n+ZP) 一1
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条