1) initial-oblique derivative problem
初-斜微商边值问题
1.
This paper mainly deals with an initial-oblique derivative problem for nonlinear nondivergent parabolic systems of second order equations with measurable coefficients in a multiply connected domain.
讨论可测系数的二阶非线性非散度型抛物型方程组在多连通区域上的初-斜微商边值问题。
2) oblique derivative problem
斜微商边值问题
1.
An oblique derivative problem for degenerate hyperbolic equation of second order;
一类退化型的二阶双曲方程的斜微商边值问题
2.
First we give a priori estimates of the solutions for the oblique derivative problem,then set operators,use the theory of integral operator and fixed point theory,proved that the existence and uniquence and give the solvability condition.
研究二阶非线性椭圆型复方程的非正则斜微商边值问题解的存在性及可解条件。
4) initial regular obligue derivative problems
初-正则斜微商问题
5) initial boundary problem
初边值问题
1.
We consider the initial boundary problem for a class of nonlinear schrodinger equations with effect of dissipation and magnectic: i■_■=△■+q(|■|~2)■+η■×(■+■)-1/2γ(t)■.
的初边值问题,在适当的条件下得到了解的blow-up性质。
2.
In this paper we prove the strong asymptotic stability of global solution to the initial boundary problem for nonlinear degenerate wave equation by means of the method in M.
Aassila[5]的方法证明了一类非线性退化波方程初边值问题整体解的强渐近稳定性。
3.
We prove the asymptotic behavior of initial boundary problem for a class of quasilinear wave equation by energy method.
利用一个特殊的积分不等式得到一类拟线性波动方程初边值问题解的渐近性。
6) initial-boundary value problem
初边值问题
1.
Separation of variables method for fractional diffusion-wave equation with initial-boundary value problem in three dimensions;
分离变量法解三维的分数阶扩散-波动方程的初边值问题
2.
Structure of global weak entropy solution for initial-boundary value problems of scalar conservation laws with non-convexity conditions;
具有非凸条件的单个守恒律初边值问题整体弱熵解的结构
3.
This paper studies the Blow-up behavior of the initial-boundary value problem for the nonlinear reaction-diffusion equation: u_t= Δ u+f(u) , and proves that the smooth solutions can only exist in a limited extent of time.
研究了非线性反应扩散方程ut=Δu+f(u)初边值问题的解的Blow up问题,证明了其光滑解只能在一个有界区间内存在。
补充资料:微商
微商就是在某函数结点上的导数为函数,其因变量的改变量与自变量的改变量两者相除的商。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条