1) quasi-local operator
拟局部算子
1.
In this paper the boundedness of quasi-local operators on some B-valued martingale spaces are studied.
本文研究了拟局部算子在几个Banach空间值鞅空间上的有界性。
2) Quasi-accretive locally bounded operator
局部有界拟增生算子
3) pseudo-local positive interpolating operator
拟局部正插值算子
1.
In this paper, we discuss the relation between the estimation of deviation of discretization algorithm of a kind of semi-infinite programs and approximation of positive interpolating operator and pseudo-local positive interpolating operator.
在此讨论一类半无限规划离散化解法的偏差估计与正插值算子、拟局部正插值算子逼近的关系,并给出解决问题的方法与思路。
4) localization operator
局部算子
1.
Finally we establish localization operators based on the reproducing kernel spaces.
最后借助该再生核空间建立了局部算子。
5) Local Lipschitzian operator
局部Lipschitz算子
6) nonlocal operator
非局部算子
1.
The Newton-Simpson integral method is applied in order to make the nonlocal operator derivative discrete.
空间导数用拟小波数值格式离散,时间导数用四阶Runge-Kutta方法离散,非局部算子用Newton-Simpson数值积分公式离散;在对非局部算子的处理中,由于拟小波基中含有Gauss正则因子,因此数值计算中,加快了收敛速度;通过数值算例验证了其数值解不满足最大值原则。
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条