说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 局部一致凸算子
1)  locally uniformly convex operator
局部一致凸算子
2)  Locally uniformly convex
局部一致凸
1.
Some results are given on uniformly convex, locally uniformly convex.
利用Banach空间中一阶特征函数刻画Banach空间的几何性质,得到关于一致凸、局部一致凸的结果。
3)  uniformly convex operator
一致凸算子
1.
The definition of uniformly convex operator and its properties are given in this paper.
本文讨论一致凸算子的问题,得到了算子T为一致凸算子的充要条件以及一致凸算子的性质。
4)  locally uniformly
局部一致凸函数
1.
The concepts such as locally uniformly convex function,compactly locally uniformly convex function and strong U-point are given.
将有关Banach空间中范数凸性的结果推广到一般的凸函数中去,给出了局部一致凸函数,紧局部一致凸函数,强U-点等概念,并详细讨论了各种凸函数之间的关系及点态性质。
5)  weak local uniform rotundity
弱局部一致凸
1.
In this paper, we discuss midpoint local uniform rotundity, weak local uniform rotundity and strong rotundity of Cesaro vector_valued sequence spaces cesp(Ek),and give their cirtieria.
讨论了Cesaro矢值序列空间cesp(Ek)的中点局部一致凸、弱局部一致凸和强凸性,给出了它们的判据。
6)  (weakly)locally K-uniformly convex
(弱)局部K一致凸
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条