1) cone Sobolev spaces
锥Sobolev空间
1.
In this paper,we study a class of Fuchsian type equations in cone Sobolev spaces.
本文研究了一类锥Sobolev空间上的Fuchs型方程的解的性态,利用Bony的仿微分算子理论的方法,运用仿积、仿复合、仿线性化等工具,并结合Mellin象征的性质,得到了此类方程的椭圆正则性定理。
2) Grand-Sobolev's space
Grand-Sobolev空间
3) Orlicz-Sobolev space
Orlicz-Sobolev空间
1.
Boundedness of Hardy-Littelwood maximal functions in Orlicz-Sobolev spaces;
Orlicz-Sobolev空间上的Hardy-Littlewood极大函数的有界性
2.
This paper studies the H property of Orlicz-Sobolev spaces.
研究了Orlicz-Sobolev空间的H性质,通过应用Orlicz空间和Sobolev空间技巧分别得到赋Luxemburg范数和赋Orlicz范数的Orlicz-Sobolev空间具有H性质的充分条件。
3.
This paper studies criteria of the mid-point locally uniform rotundity of Orlicz-Sobolev space for both Luxemburg norm and Orlicz norm by combining the skill of Orlicz spaces with that of Sobolev spaces.
本文研究了Orlicz-Sobolev空间的中点局部一致凸性,通过结合Orlicz空间和Sobolev空间的技巧得到分别赋Luxemburg范数和赋Orlicz范数的Orlicz-Sobolev空间具有中点局部一致凸性的充要条件。
4) Sobolev space
Sobolev空间
1.
The sufficient conditions for the frames on Sobolev space;
Sobolev空间H~s(R)上框架的充分条件
2.
The Necessary Conditions for the Frames on Sobolev Space;
Sobolev空间H~s(R)上框架的必要条件
3.
Properties of multiresolution analysis in Sobolev space;
Sobolev空间上多尺度分析的性质
5) strip of Sobolev space
Sobolev空间带
1.
The localization theorem of wavelet frame expansion formula in strip of Sobolev spaces is established,such that a localization theorem of wavelet frame expansion in L 2(R) is only a particular example of this theorem when S =0.
建立了 Sobolev空间带 HS( R) ( S≥ 0 )的小波框架展开的局部化定理 ,使得 L2 ( R)的小波框架展开局部化 ,只是该定理 S=0的特
6) Sobolev spaces
Sobolev空间
1.
In this paper a posteriori error estimates for Galerkin approximation of general operator equations is firstly presented in the framework of Sobolev spaces.
首先在 Sobolev空间的框架下 ,对一般的算子方程的 Galerkin逼近给出了后验误差估计的结果。
2.
The cardinal spline approximation of Sobolev spaces is studied in many papers by the authors.
Sobolev空间的Cardinal样条逼近已有较多研究。
3.
If,in addition,φ lies in the Sobolev spaces H~m(R),then the derivatives a~(j2)ψ~((m))(a~j·-k)(j,k∈Z) also form a Riesz basis for L~2(R).
-k)(j,k∈Z)构成L2(R)的Riesz基,当φ属于Sobolev空间Hm(R)的时,导数aj2ψ(m)(aj。
补充资料:HJ系列双锥混合机
应用: 本机适用于医药、化工、食品、建材等行业的粉状、粒状物料的混合。 原理: 本机将粉末或粒状物料通过真空输送或人工加料到双锥容器中,随着容量的为断旋转,物料在容器中进行复杂的撞击运动,达到均匀的混合。 本机节约能源、操作方便、劳动强度低、工作效率较高。 技术参数:
|
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条