1) Sobolev type space
Sobolev型空间
2) Herz type Sobolev space
Herz型Sobolev空间
1.
It is proved that, for 0<α<n1-1q,1<q<∞,0<p<∞,T_(Ω,β)(extends) to be a bounded operator from the Herz type Sobolev space to Herz type space with Ω being a distribution in the Hardy space H~r(S~(n-1)) with r=n-1n-1+β.
∫Rnb(|y|)Ω(y′)|y|-n-βf(x-y)dy,当Ω∈Hr(Sn-1)r=n-1n-1+β时,是从Herz型Sobolev空间到Herz型空间有界的。
3) Grand-Sobolev's space
Grand-Sobolev空间
4) Orlicz-Sobolev space
Orlicz-Sobolev空间
1.
Boundedness of Hardy-Littelwood maximal functions in Orlicz-Sobolev spaces;
Orlicz-Sobolev空间上的Hardy-Littlewood极大函数的有界性
2.
This paper studies the H property of Orlicz-Sobolev spaces.
研究了Orlicz-Sobolev空间的H性质,通过应用Orlicz空间和Sobolev空间技巧分别得到赋Luxemburg范数和赋Orlicz范数的Orlicz-Sobolev空间具有H性质的充分条件。
3.
This paper studies criteria of the mid-point locally uniform rotundity of Orlicz-Sobolev space for both Luxemburg norm and Orlicz norm by combining the skill of Orlicz spaces with that of Sobolev spaces.
本文研究了Orlicz-Sobolev空间的中点局部一致凸性,通过结合Orlicz空间和Sobolev空间的技巧得到分别赋Luxemburg范数和赋Orlicz范数的Orlicz-Sobolev空间具有中点局部一致凸性的充要条件。
5) Sobolev space
Sobolev空间
1.
The sufficient conditions for the frames on Sobolev space;
Sobolev空间H~s(R)上框架的充分条件
2.
The Necessary Conditions for the Frames on Sobolev Space;
Sobolev空间H~s(R)上框架的必要条件
3.
Properties of multiresolution analysis in Sobolev space;
Sobolev空间上多尺度分析的性质
6) strip of Sobolev space
Sobolev空间带
1.
The localization theorem of wavelet frame expansion formula in strip of Sobolev spaces is established,such that a localization theorem of wavelet frame expansion in L 2(R) is only a particular example of this theorem when S =0.
建立了 Sobolev空间带 HS( R) ( S≥ 0 )的小波框架展开的局部化定理 ,使得 L2 ( R)的小波框架展开局部化 ,只是该定理 S=0的特
补充资料:核型空间
核型空间
nuclear space
,,鸳嚣黑髻长:塑。“Poc,“~‘ “~H尸~占‘,、从几‘山孟y conV祀X SOace),从亡习{任一E以nach空间中的所有连续线性映射都是核型算子(nuCbU。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条