说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> grand Sobolev空间
1)  grand Sobolev space
grand Sobolev空间
1.
Using a pointwise inequality for Sobolev functions in terms of maximum function to construct a global Lipschitz continuous test function,the authors obtain uniqueness re- sults for very weak solutions in grand Sobolev space W_0~(θ,p)) (Ω) to non-linear elliptic equation -divA(x,u,Du)=f(x) satisfying certain conditions.
利用以极大函数表示的有关Sobolev函数的逐点不等式来构造全局的Lipschitz型检验函数,得到了,在一定条件下,拟线性椭圆方程-div A(x,u,Du)=f(x)在grand Sobolev空间W_0~(θ,p)(Ω)中的很弱解是唯一的。
2)  Grand-Sobolev's space
Grand-Sobolev空间
3)  Grand-jean texture
Grand-jean织构
4)  Orlicz-Sobolev space
Orlicz-Sobolev空间
1.
Boundedness of Hardy-Littelwood maximal functions in Orlicz-Sobolev spaces;
Orlicz-Sobolev空间上的Hardy-Littlewood极大函数的有界性
2.
This paper studies the H property of Orlicz-Sobolev spaces.
研究了Orlicz-Sobolev空间的H性质,通过应用Orlicz空间和Sobolev空间技巧分别得到赋Luxemburg范数和赋Orlicz范数的Orlicz-Sobolev空间具有H性质的充分条件。
3.
This paper studies criteria of the mid-point locally uniform rotundity of Orlicz-Sobolev space for both Luxemburg norm and Orlicz norm by combining the skill of Orlicz spaces with that of Sobolev spaces.
本文研究了Orlicz-Sobolev空间的中点局部一致凸性,通过结合Orlicz空间和Sobolev空间的技巧得到分别赋Luxemburg范数和赋Orlicz范数的Orlicz-Sobolev空间具有中点局部一致凸性的充要条件。
5)  Sobolev space
Sobolev空间
1.
The sufficient conditions for the frames on Sobolev space;
Sobolev空间H~s(R)上框架的充分条件
2.
The Necessary Conditions for the Frames on Sobolev Space;
Sobolev空间H~s(R)上框架的必要条件
3.
Properties of multiresolution analysis in Sobolev space;
Sobolev空间上多尺度分析的性质
6)  Sobolev spaces
Sobolev空间
1.
In this paper a posteriori error estimates for Galerkin approximation of general operator equations is firstly presented in the framework of Sobolev spaces.
首先在 Sobolev空间的框架下 ,对一般的算子方程的 Galerkin逼近给出了后验误差估计的结果。
2.
The cardinal spline approximation of Sobolev spaces is studied in many papers by the authors.
Sobolev空间的Cardinal样条逼近已有较多研究。
3.
If,in addition,φ lies in the Sobolev spaces H~m(R),then the derivatives a~(j2)ψ~((m))(a~j·-k)(j,k∈Z) also form a Riesz basis for L~2(R).
-k)(j,k∈Z)构成L2(R)的Riesz基,当φ属于Sobolev空间Hm(R)的时,导数aj2ψ(m)(aj。
补充资料:grand thermodynamic potential
分子式:
CAS号:

性质:是热力学状态函数。它适用于粒子数可变的敞开系统,简称巨势。定义巨势其中,U为系统的内能;S为熵;μi为组分i的化学势;ni为组分i的量(mol)。如果系统只做体积功,则在系统的无限小过程中,巨势的改变为

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条