1) nonnegative lebesque integrablity
勒贝格非负可积
2) lebesgue integrable
勒贝格可积的
3) Lebesgue Integral
勒贝格积分
1.
Firstly,the article theoretically expounds the superiority of Lebesgue Integral,then through the detailed cases analyzes its superiority shown in the practical application compared to Riemann Integral.
文章首先从理论上阐明勒贝格积分的优越性,然后通过具体实例详细探讨勒贝格积分相对于黎曼积分,在实际应用中体现出的巨大优越性。
2.
Their properties and the connection with Lebesgue integral sum and integral are studied.
基于粗糙集理论的知识库,定义了知识积分和与知识积分,研究了它们自身的性质及与勒贝格积分和、勒贝格积分的关系。
3.
The paper states the distinctions between Riemann integral and Lebesgue integral from the aspects of the definition of integral,the continuity of integrable function,the additivity of integral,integral limitation theorems and Newton-Leibnitz formula.
从积分的定义,可积函数的连续性,积分的可加性,积分极限定理,牛顿-莱布尼兹公式五个方面阐述了黎曼积分与勒贝格积分的区别。
4) lebesgue area
勒贝格面积
5) Lebesgue Measurable Function
勒贝格可测函数
1.
The relations between the Lusin theorem and the natural disposition theorem of the Lebesgue measurable functions are discussed in this paper,according to the almost every point of the n-dimension Lebesgue measurable set being the entire dense spot and the Lusin theorem.
讨论鲁金定理与勒贝格可测函数的本性定理之间的关系,利用n-维勒贝格可测集几乎所有的点都是全密点与鲁金定理的结论证明勒贝格可测函数的本性定理,利用勒贝格可测函数的本性定理证明鲁金定理。
6) lebesgue measurable
勒贝格可测的
补充资料:积负
1.犹积欠。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条