说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 勒贝格 斯蒂尔吉斯积分
1)  lebesgue stieltjes integral
勒贝格 斯蒂尔吉斯积分
2)  Bernard Stiegler
贝尔纳.斯蒂格勒
3)  L-S integral
勒贝格-斯蒂阶积分
4)  Lebesgue Integral
勒贝格积分
1.
Firstly,the article theoretically expounds the superiority of Lebesgue Integral,then through the detailed cases analyzes its superiority shown in the practical application compared to Riemann Integral.
文章首先从理论上阐明勒贝格积分的优越性,然后通过具体实例详细探讨勒贝格积分相对于黎曼积分,在实际应用中体现出的巨大优越性。
2.
Their properties and the connection with Lebesgue integral sum and integral are studied.
基于粗糙集理论的知识库,定义了知识积分和与知识积分,研究了它们自身的性质及与勒贝格积分和、勒贝格积分的关系。
3.
The paper states the distinctions between Riemann integral and Lebesgue integral from the aspects of the definition of integral,the continuity of integrable function,the additivity of integral,integral limitation theorems and Newton-Leibnitz formula.
从积分的定义,可积函数的连续性,积分的可加性,积分极限定理,牛顿-莱布尼兹公式五个方面阐述了黎曼积分与勒贝格积分的区别。
5)  lebesgue area
勒贝格面积
6)  Lebesgue Decomposition
勒贝格分解
补充资料:勒贝格
勒贝格(1875~1941)
Lebesgue,Henri L!!!L0329_1on

   法国数学家。1875年6月28日生于博韦,1941年7月26日卒于巴黎。1894~1897年在巴黎高等师范学校学习。1902年在巴黎大学获得博士学位,从1902年起先后在雷恩大学、普瓦蒂埃大学、巴黎大学文理学院任教。1922年任法兰西学院教授,同年被选为巴黎科学院院士。
   勒贝格的主要贡献是测度和积分理论。他采用无穷个区间来覆盖点集,使许多特殊的点集的测度有了定义。在定义积分时他也采取划分值域而不是划分定义域的办法,使积分归结为测度,从而使黎曼积分的局限性得到突破,进一步发展了积分理论。他的理论为20世纪的许多数学分支如泛函分析、概率论、抽象积分论、抽象调和分析等奠定了基础。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条