1) fourth order wave equation
四阶波动方程
1.
The paper considers the fourth order wave equations utt+Δ2u+ut=|u|αu in exterior domains.
研究外区域Ω上的四阶波动方程utt+Δ2u+ut=f(u)其中非线性项f(u)取为|u|αu,α>0。
2.
The initial boundary value problem of fourth order wave equation with dispersive and dissipative terms is studied.
研究具色散和耗散项的四阶波动方程的初边值问题。
2) fourth-order wave equation
四阶波动方程
1.
For the initial-boundary value problem of a kind of nonlinear fourth-order wave equations:where Rn is bounded domain with sufficiently smooth boundary.
对于一类非线性四阶波动方程的初边值问题:其中Ω(?)R~n为边界充分光滑的有界区域。
3) fourth order wave equations
四阶波动方程
1.
In this paper,Existence of its global solutions of Cauchy problem for some semilinear fourth order wave equations are proved by global iterative method,with the help of decay estimates of linear problem in some appropriate Banach Space.
借助线性问题的衰减估计,在一适当的Banach空间,利用整体迭代法证明了一类非线性四阶波动方程Cauchy问题整体解的存在性。
2.
This paper discuss the Cauchy problem for one kind of nonlinear fourth order wave equations.
本文研究了一类非线性四阶波动方程的Cauchy问题,引入了一个同时体现解的能量估计及解的衰减性的函数空间作为迭代的基本空间。
5) fourth order nonlinear wave equations
四阶非线性波动方程
1.
Initial boundary value problem for a class of fourth order nonlinear wave equations with critical initial data E(0)=d,I(u_0)<0
具有临界初值E(0)=d,I(u_0)<0的一类四阶非线性波动方程的初边值问题
6) four-order rod vibration equation
四阶杆振动方程
1.
Precise time-integration method for solving four-order rod vibration equation;
解四阶杆振动方程的精细时程积分法
2.
In this paper we first consider to establish Hamiltonian systems for four-order rod vibration equation,then use hyperbolic function sinh(x) to construct symplectic schemes in periodic boundary condition with accuracy of arbitrary order.
本文首先考虑建立四阶杆振动方程0=+xxxxttuu的哈密顿方程组,然后利用 Hyperbolic函数sinh(x)构造具有周期边界条件的具任意阶精度的辛格式,并讨论其稳定性,最后的数值结果表明,辛格式具有良好的长时间数值行为。
3.
By applying Hyperbolic function cosh(x), the author constructs a three-level explicit symplectic scheme for four-order rod vibration equation with precision of arbitrary order; and carries out stability analysis.
利用 Hyperbolic函数 cosh(x)构造四阶杆振动方程的任意阶精度的三层显式辛格式 ,并进行了稳定性分析 。
补充资料:波动方程
见双曲型偏微分方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条