1) higher order Bernoulli polynomials
高阶Bernoulli多项式
1.
Using the method of generating function,short computational formulas of higher order Bernoulli polynomials and higher order Euler polynomials are given by two Stirling numbers of the first kind.
使用发生函数方法,利用两种第一类Stirling数给出高阶Bernoulli多项式和高阶Euler多项式的简捷计算公式。
2.
In this paper, A new kind of computational formulas of higher order Euler polynomials and higher order Bernoulli polynomials are given by using Stirling number, these formulas have a good structure and are easy to apply.
利用Stirling数给出高阶Euler多项式和高阶Bernoulli多项式的一类新的计算公式,这些公式结构精美,便于应用。
2) Bernoulli polynomials of higher order
高阶Bernoulli多项式
1.
In this paper,we apply the generating function method to obtain some relationships between generalized Bernoulli polynomials of higher order and Euler polynomials of higher order,therefore we deduce some corresponding special cases.
利用发生函数的方法得到了广义高阶Bernoulli多项式和广义高阶Euler多项式之间的关系,并由此得到了一些特殊情况包括高阶Bernoulli多项式和高阶Euler多项式之间的关系。
3) higher order Apostol-Bernoulli polynomials
高阶Apostol-Bernoulli多项式
1.
In this paper,the definition of the higher order Apostol-Euler polynomials and the higher order Apostol-Bernoulli polynomials is created.
给出高阶Apostol-Euler多项式与高阶Apostol-Bernoulli多项式的定义,研究各自性质及二者之间的关系,同时利用Stirling数给出这两类多项式的计算公式,推广了文献[5-6]的结果。
2.
By using the method of generating function and the technique of calculating,several identity involving higher order Apostol-Bernoulli polynomials and stirling numbers are established,and computational formulas of higher order Apostol-Bernoulli polynomials and high order Apostol-Bernoulli numbers are given.
使用发生函数方法和计算技巧,建立起高阶Apostol-Bernoulli多项式与第1类Stirling数之间的恒等式,得到关于高阶Apostol-Bernoulli多项式、高阶Apostol-Bernoulli数等的计算公式。
4) higher-order multivariable Bernoulli's polynomial
高阶多元Bernoulli多项式
5) generalized Bernoulli polynomials of higher order
广义高阶Bernoulli多项式
1.
In this paper,we apply the generating function method to obtain some relationships between generalized Bernoulli polynomials of higher order and Euler polynomials of higher order,therefore we deduce some corresponding special cases.
利用发生函数的方法得到了广义高阶Bernoulli多项式和广义高阶Euler多项式之间的关系,并由此得到了一些特殊情况包括高阶Bernoulli多项式和高阶Euler多项式之间的关系。
6) Higher order Bernoulli polynomial
高阶Bernoulli数和多项式
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。