1) polynom ials
广义m阶Euler-Bernoulli多项式
2) generalized m_th_order Euler_Bernoulli numbers
广义m阶Euler-Bernoulli数
3) generalized Bernoulli polynomials of higher order
广义高阶Bernoulli多项式
1.
In this paper,we apply the generating function method to obtain some relationships between generalized Bernoulli polynomials of higher order and Euler polynomials of higher order,therefore we deduce some corresponding special cases.
利用发生函数的方法得到了广义高阶Bernoulli多项式和广义高阶Euler多项式之间的关系,并由此得到了一些特殊情况包括高阶Bernoulli多项式和高阶Euler多项式之间的关系。
4) generalized n-th-order Bernoulli polynomial
广义n阶Bernoulli多项式
5) generalized Euler polynomials of higher order
广义高阶Euler多项式
6) generalized n-th-order Euler polynomial
广义n阶Euler多项式
1.
In this paper, the mathematical relationship of between generalized n-th-order Euler numbers and Bernoulli numbers, generalized n-th-order Euler polynomials and Bernoulli polynomials have been obtained.
本文得到了广义n阶Euler数和广义n阶Bernoulli数,广义n阶Euler多项式和广义n阶Bernoulli多项式的关系式。
补充资料:Euler多项式
Euler多项式
Eider polynomials
D山牙多项式【D‘留洲咖田血面:,曲几epa MHoro,月e.“] 形如 一,、声fn1E‘「门卜, 丑‘幼=)』!!屯手lx一份l 饰~局Lk」2“L一2」的多项式,其中风为D心留数(E任坛rnl匹n1比rs).E枉晓r多项式可按下列公式依次计算: 二(x)十夕「“1E-(x)一:、. S=0 Ls」特别是, 、(x)一,,马(x)一,一告,、(x)一二。一l)·EUler多项式满足微分方程 氏(x+l)十凡(x)=2妙,并属于A即dl多项式(APpell polynomials)类,即满足关系式 d~,、~ 云尺(x)一峨一,(x).E认贻r多项式的母函数是 Zexr界及(x) 己‘+l浓写〕月!E吐贻r多项式具有Four七r展开式 _、n!杀c《粥「‘从+l飞冗x+(n+l、耐21 人‘X、=-‘于一夕一二二二上二二二共尖二.共一谷祥一二“二‘卫_t*〕 兀’一‘诬劝叹水十i厂- 0簇x(l,n)L当”为奇数时,B众r多项式满足关系式 式(1一x)=(一l)”瓦(x), 二,、一。,丫‘一l、*。[二十上1: “一“一Lm」当n为偶数时,则满足关系式一、2m·喇‘、。_「、kl 瓦(mx)一俄了高‘一‘)“沙十言」,其中凡十,是.欲以面多项式(氏“幻词山训琢幻代山山)·与(*)的右端重合的周期函数是K叨M份明阵.不等式(Koln刃即rovh闰珑山ty)和其他一些函数论的极值问题中的极值函数.广义B亚r函数也已被研究.【补注】此外,E任贻r多项式还满足等式 氏(x+h)= _、.「。飞,_、二「。1,._._,、._,、一乓(x)十Ll」”尺一(x)十”‘十卜兰1J“”一‘尽(x)十几(x),可用符号简写为 乓(x+h)={E(x)+h}”·此式右端应读作:首先把右端展开为表达式(梦){E冈y尸一’之和,然后用双(x)代替{E(x)}‘· 采用同样的符号表示法,对每个多项式P(x),有 p(E(x)+l)+p(E(x))=2P(x). 张鸿林译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条