1) Apostol-Bernoulli polynomials
Apostol-Bernoulli多项式
1.
Apostol-Bernoulli polynomials and Hurwitz Zeta function;
Apostol-Bernoulli多项式和Hurwitz Zeta函数
2.
In the present paper,we obtain a new formulas of the Apostol-Bernoulli polynomials,which denote using the Gaussian hypergeometric functions,and give certain special cases and applications.
我们得到Apostol-Bernoulli多项式的一个用Gauss超几何函数表示的新公式,并给出了它的一些特殊情况和应用。
2) higher order Apostol-Bernoulli polynomials
高阶Apostol-Bernoulli多项式
1.
In this paper,the definition of the higher order Apostol-Euler polynomials and the higher order Apostol-Bernoulli polynomials is created.
给出高阶Apostol-Euler多项式与高阶Apostol-Bernoulli多项式的定义,研究各自性质及二者之间的关系,同时利用Stirling数给出这两类多项式的计算公式,推广了文献[5-6]的结果。
2.
By using the method of generating function and the technique of calculating,several identity involving higher order Apostol-Bernoulli polynomials and stirling numbers are established,and computational formulas of higher order Apostol-Bernoulli polynomials and high order Apostol-Bernoulli numbers are given.
使用发生函数方法和计算技巧,建立起高阶Apostol-Bernoulli多项式与第1类Stirling数之间的恒等式,得到关于高阶Apostol-Bernoulli多项式、高阶Apostol-Bernoulli数等的计算公式。
3) the generalized Apostol-Bernoulli polynomials
广义Apostol-Bernoulli多项式
1.
In the second chapter,we give several symmetric identities on the generalized Apostol-Bernoulli polynomials by applying the generating functions.
第二章,应用生成函数,得到若干关于广义Apostol-Bernoulli多项式的对称恒等式,这些结果推广了一些已知的恒等式。
4) Apostol-Genocchi polynomials
Apostol-Genocchi多项式
1.
In this paper,by the generating functions and the Gaussian hypergeometric functions,the authors obtain some new formulae of the Apostol-Genocchi polynomials.
利用发生函数以及高斯超几何函数得到了关于Apostol-Genocchi多项式的一些新的恒等式,并进一步推导出一些特殊情况及应用。
5) Bernoulli polynomials
Bernoulli多项式
1.
Apostol-Bernoulli polynomials and Hurwitz Zeta function;
Apostol-Bernoulli多项式和Hurwitz Zeta函数
2.
Sum product involving Bernoulli polynomials and Euler polynomials;
一类包含Bernoulli多项式与Euler多项式的积的和
3.
The Bernoulli numbers of higher order and Bernoulli polynomials of higher order;
高阶Bernoulli数和高阶Bernoulli多项式
6) Bernoulli polynomial
Bernoulli多项式
1.
Relationship between Bernoulli polynomial and power sum polynomial;
Bernoulli多项式与幂和多项式的关系
2.
Some relations between Bernoulli polynomial and Eurler polynomial;
几个Bernoulli多项式和Euler多项式的关系式
3.
In this paper,the Akiyama-Tanigawa algorithm for Bernoulli polynomials and Euler polynomials was investigated,a new kind of closed formulae for Bernoulli polynomials and Euler polynomials are given via Stirling numbers.
研究Bernoulli多项式和Euler多项式的Akiyama-Tanigawa算法,利用Stirling数分别给出它们的一类新的封闭计算公式。
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。