1) Nrlund Bernoulli polynomials
Nrlund Bernoulli多项式
2) Nrlund Euler polynomials
Nrlund Euler多项式
3) Nrlund numbers
Nrlund数
1.
A recurrence formula for higher order bernoulli numbers and a computational formula for Nrlund numbers are given, extends the results of Namias[4], Deeba and Rodriguez[5], and Tuenter[6].
给出了高阶Bernoulli数的一个递推公式和Nrlund数的一个计算公式,推广了Namias[4],Deeba和Rodriguez[5],Tuenter[6]的结果。
4) Bernoulli polynomials
Bernoulli多项式
1.
Apostol-Bernoulli polynomials and Hurwitz Zeta function;
Apostol-Bernoulli多项式和Hurwitz Zeta函数
2.
Sum product involving Bernoulli polynomials and Euler polynomials;
一类包含Bernoulli多项式与Euler多项式的积的和
3.
The Bernoulli numbers of higher order and Bernoulli polynomials of higher order;
高阶Bernoulli数和高阶Bernoulli多项式
5) Bernoulli polynomial
Bernoulli多项式
1.
Relationship between Bernoulli polynomial and power sum polynomial;
Bernoulli多项式与幂和多项式的关系
2.
Some relations between Bernoulli polynomial and Eurler polynomial;
几个Bernoulli多项式和Euler多项式的关系式
3.
In this paper,the Akiyama-Tanigawa algorithm for Bernoulli polynomials and Euler polynomials was investigated,a new kind of closed formulae for Bernoulli polynomials and Euler polynomials are given via Stirling numbers.
研究Bernoulli多项式和Euler多项式的Akiyama-Tanigawa算法,利用Stirling数分别给出它们的一类新的封闭计算公式。
6) Bernoulli multinomial
Bernoulli多项式
1.
This article is a study of Bernoulli multinomial and Eurler multinomial, and by making use of functional relationship, reveals the inherent relation between the two types of multinomial, and wherefrom obtains a set of interesting identical equations.
本文研究了Bernoulli多项式和Eurler多项式 ,利用函数关系式 ,揭示了两类多项式之间的内在联系 ,由此得到了一组有趣的恒等
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。