1) high degree polynomial
高阶多项式
1.
In this paper,it was to be analyzed respectively for cosine acceleration,sinusoidal acceleration,improving trapezoid acceleration of follower motion and SVAJ curve of high degree polynomial based on the characteristic of double-stopping-distance cam mechanism.
针对双停程凸轮机构的特点,分别对从动件余弦加速度、正弦加速度、改进梯形加速度、改进正弦加速度以及高阶多项式的SVAJ曲线进行了详细的分析和对比,得出了适合不同的实际情况的运动型式,对于凸轮机构设计具有一定的指导价值。
2) higher order polynomial-fitting
高阶多项式拟合
3) high order Genocchi polynomials
高阶Genocchi多项式
4) higher order Bernoulli polynomials
高阶Bernoulli多项式
1.
Using the method of generating function,short computational formulas of higher order Bernoulli polynomials and higher order Euler polynomials are given by two Stirling numbers of the first kind.
使用发生函数方法,利用两种第一类Stirling数给出高阶Bernoulli多项式和高阶Euler多项式的简捷计算公式。
2.
In this paper, A new kind of computational formulas of higher order Euler polynomials and higher order Bernoulli polynomials are given by using Stirling number, these formulas have a good structure and are easy to apply.
利用Stirling数给出高阶Euler多项式和高阶Bernoulli多项式的一类新的计算公式,这些公式结构精美,便于应用。
5) higher order Euler polynomials
高阶Euler多项式
1.
The higher order Euler numbers and higher order Euler polynomials;
高阶Euler数和高阶Euler多项式
2.
Using the method of generating function,short computational formulas of higher order Bernoulli polynomials and higher order Euler polynomials are given by two Stirling numbers of the first kind.
使用发生函数方法,利用两种第一类Stirling数给出高阶Bernoulli多项式和高阶Euler多项式的简捷计算公式。
3.
In this paper, A new kind of computational formulas of higher order Euler polynomials and higher order Bernoulli polynomials are given by using Stirling number, these formulas have a good structure and are easy to apply.
利用Stirling数给出高阶Euler多项式和高阶Bernoulli多项式的一类新的计算公式,这些公式结构精美,便于应用。
6) higher order Apostol-Euler polynomials
高阶Apostol-Euler多项式
1.
In this paper,the definition of the higher order Apostol-Euler polynomials and the higher order Apostol-Bernoulli polynomials is created.
给出高阶Apostol-Euler多项式与高阶Apostol-Bernoulli多项式的定义,研究各自性质及二者之间的关系,同时利用Stirling数给出这两类多项式的计算公式,推广了文献[5-6]的结果。
补充资料:阶合
1.见"阶阁"。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条