说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非退化可解李代数g
1)  The nondegenerate solvable Lie algebra g
非退化可解李代数g
2)  3-solvable non-degenerate Lie algebra
三次可解型非退化李代数
1.
They are extended Heisenberg Lie algebra and 3-solvable non-degenerate Lie algebra.
本文给出了非退化可解李代数的两个类型:三次可解型非退化李代数和扩充的 Heisenberg李代数,并确定三次可解型非退化李代数及其导子李代数的结构。
2.
One is extended Heisenberg Lie Algebra, the other is 3-solvable non-degenerate Lie Algebra.
并通过对其极小生成元系的讨论得到了这类李代数的两种重要类型:扩充的Heisenberg李代数和三次可解型非退化李代数。
3)  TheVertex algebra of associated to finite-nondegenerate nilpotent Lie algebra g
非退化幂零李代数g的顶点代数
4)  solvable Lie algebras
可解李代数
1.
In this paper,we have discussed a 3-step nilpotent Lie algebra with a two dimensional center and studyied a class of indecomposable solvable Lie algebras which nilradical is the nilpotent Lie algebra.
讨论了一类具有二维中心的三步幂零李代数的一些结构性质,研究了以这类幂零李代数为幂零根基的不可分解的可解李代数,确定了该类可解李代数的维数,并具体构造出复数域上其中一类6维的可解李代数。
2.
According to Levi theorem,four dimensional unsolvable Lie algebras L can be decomposed as a semidirect sum L0S,where L0 is the semisimple subalgebra and S the radical of L.
根据Levi定理,四维不可解李代数L可以分解为它的半单纯子代数与根的半直和L0 S。
5)  solvable Lie algebra
可解李代数
1.
Some Properties on Nilpotent Lie Alg ebras and Solvable Lie Algebras;
幂零李代数和可解李代数的性质
2.
In this paper,we determine the structure of solvable Lie algebras with nilradical Wn,and its uniqueness up to isomorphism is proved.
确定了nil-根基为Wn的可解李代数的结构,并证明了这类可解李代数在同构意义下是唯一的。
6)  degenerate composition Lie algebras
退化合成李代数
1.
According to Asashiba,it takes advantage of the isomorphic correspondance between Ringel-Hall Lie algebras which are realized by root categories of Tubular algebras and 2-Toroidal Lie algebras to construct quotient algebras of degenerate composition Lie algebras of Tubular a.
按照Asashiba的思路,本文利用Tubular代数的根范畴的Ringel-Hall李代数与2-Toroidal李代数的同构对应,在T(2,2,2,2),T(3,3,3),T(4,4,2),T(6,3,2)型Tubular代数的退化合成李代数上构造商代数,并证明它们同构于相应的D4,E6,E7,E8型单李代数,而且李运算完全由Hall积给出。
补充资料:非结合环与非结合代数


非结合环与非结合代数
on-associative rings and algebras

非结合环与非结合代数【珊心胭仪妇柱视血娜.d alge-b旧s;。eaceo””姗.oe.二、双a.幼。6P。」 具有两个二元运算+与,,除了可能不满足乘法结合律外,满足结合环与代数(a洛。clati记nn邵and目罗b璐)之所有公理的集合.非结合环与代数的第一批例子出现在19世纪中叶,是不结合的(Ca外呀数(c盯触yn山n1比IS)和更一般的超复数(h”姆rComp恤nUmber)).给定一个结合环(代数),如果用运算〔a,bl二ab一ba代替原有的乘法,其结果是一个非结合环(代数),这是个Lie环(代数).另一类重要的非结合环(代数)是Jo攻lan环(代数),它们可由在特征非2的域(或有1和1/2的交换的算子环)上的结合代数中定义运算a·b=(ab+ba)/2得到.非结合环与代数的理论已经发展成代数学的一个独立分支,展现出与数学的其它领域以及物理学、力学、生物学及其他学科的许多联系.这个理论的中心部分是熟知的拟结合环和代数(n比ly一别粥戊泊石wn刀乡缸记a】罗bras)的理论,它们有:Lie环和珠代数,交错环和交错代数,北攻坛幻环与Joltlan代数,MaJ几哪B环和Ma月五U口B代数,以及它们的某些推广(见Ue代数(Lieal罗bra);交错环与代数(司加叮必tiverm邵alld目罗b挑);J加止川代数(Jo攻协nal罗bIa);M幼城e。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条