1) Coarse-grained genetic algorithm
粗粒度遗传算法
2) coarse-grained parallel genetic algorithms(CPGA)
粗粒度并行遗传算法
1.
The paper discussed the mechanism and brief process of the coarse-grained parallel genetic algorithms(CPGA).
探讨了粗粒度并行遗传算法的机理和运行的基本步骤,通过对经典测试函数Bohachevsky 3#函数进行不同参数组合的多次计算并比较计算结果,分析了粗粒度并行遗传算法的计算性能特点。
3) fine-grained genetic algorithm
细粒度模型遗传算法
4) Coarse grain algorithm
粗粒度算法
5) GA-PSO algorithm
遗传-粒子群算法
6) Genetic Algorithm-Particle Swarm Optimization(GAPSO)
遗传粒群算法
补充资料:数值遗传算法
分子式:
CAS号:
性质:基于自然界生物进化机制的一种全局最优化方法。在遗传算法中,被研究体系的响应曲面看作为一个群体,响应曲面上的每一个点作为群体中的一个个体,个体用多维向量或矩阵来描述,组成矩阵的和向量的参数(元素)相应于生物中组成染色体的基因。染色体用固定长度的二进制位串(bit string)表示。通过交换(染色体基因交换)、突变(改变染色体基因)等遗传操作,在参数的一定范围内进行随机搜索,不断改善数据结构,构造出不同的向量,相当于得到了被研究问题的不同的解(一个个体相当于一个解)。目标函数较优的点被保留,较差的点被淘汰,最后达到全局最优化。
CAS号:
性质:基于自然界生物进化机制的一种全局最优化方法。在遗传算法中,被研究体系的响应曲面看作为一个群体,响应曲面上的每一个点作为群体中的一个个体,个体用多维向量或矩阵来描述,组成矩阵的和向量的参数(元素)相应于生物中组成染色体的基因。染色体用固定长度的二进制位串(bit string)表示。通过交换(染色体基因交换)、突变(改变染色体基因)等遗传操作,在参数的一定范围内进行随机搜索,不断改善数据结构,构造出不同的向量,相当于得到了被研究问题的不同的解(一个个体相当于一个解)。目标函数较优的点被保留,较差的点被淘汰,最后达到全局最优化。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条