1) genetic scheduling algorithm
遗传调度算法
1.
Based on combination of simulated annealing algorithm(SAA)and genetic algorithm,we have improved the existing genetic scheduling1algorithm and propose a new genetic scheduling algorithm maintaining optima adaptively with simulated annealing(SAMOAGSA).
在结合已有的模拟退火算法和遗传算法的基础上,改进了现有的遗传调度算法,自适应地保存最优个体,并对其进行模拟退火。
2) genetic algorithm for project scheduling
项目调度遗传算法
4) Gradient-Genetic algorithm
梯度遗传算法
5) variable-length coding genetic algorithm
变长度遗传算法
6) Coarse-grained genetic algorithm
粗粒度遗传算法
补充资料:数值遗传算法
分子式:
CAS号:
性质:基于自然界生物进化机制的一种全局最优化方法。在遗传算法中,被研究体系的响应曲面看作为一个群体,响应曲面上的每一个点作为群体中的一个个体,个体用多维向量或矩阵来描述,组成矩阵的和向量的参数(元素)相应于生物中组成染色体的基因。染色体用固定长度的二进制位串(bit string)表示。通过交换(染色体基因交换)、突变(改变染色体基因)等遗传操作,在参数的一定范围内进行随机搜索,不断改善数据结构,构造出不同的向量,相当于得到了被研究问题的不同的解(一个个体相当于一个解)。目标函数较优的点被保留,较差的点被淘汰,最后达到全局最优化。
CAS号:
性质:基于自然界生物进化机制的一种全局最优化方法。在遗传算法中,被研究体系的响应曲面看作为一个群体,响应曲面上的每一个点作为群体中的一个个体,个体用多维向量或矩阵来描述,组成矩阵的和向量的参数(元素)相应于生物中组成染色体的基因。染色体用固定长度的二进制位串(bit string)表示。通过交换(染色体基因交换)、突变(改变染色体基因)等遗传操作,在参数的一定范围内进行随机搜索,不断改善数据结构,构造出不同的向量,相当于得到了被研究问题的不同的解(一个个体相当于一个解)。目标函数较优的点被保留,较差的点被淘汰,最后达到全局最优化。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条