说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
专业词汇(按中图法分类)
  • 马列主义、毛泽东思想、邓小平理论
  • 哲学、宗教
  • 社会科学总论
  • 政治、法律
  • 军事
  • 经济
  • 文化、科学、教育、体育
  • 语言、文字
  • 文学
  • 艺术
  • 历史、地理
  • 自然科学总论
  • 数理科学和化学
  • 天文学、地球科学
  • 生物科学
  • 医药、卫生
  • 农业科学
  • 工业技术
  • 交通运输
  • 航空、航天
  • 环境科学、安全科学
您的位置:首页 -> 词典 -> 稀疏数据立方体
1)  sparse datacube
稀疏数据立方体
1.
A new method to compute the sparse datacube;
一种新的计算稀疏数据立方体的方法
2)  sparse data cube
稀疏数据立方
3)  data sparsity
数据稀疏
1.
Aiming at the problem of data sparsity for collaborative filtering,a novel rough set-based collaborative filtering algorithm is proposed.
针对协同过滤中的数据稀疏问题,提出了一种基于粗集的协同过滤算法。
4)  sparse data
稀疏数据
1.
With the in-depth study, however, appearing sparse data imaging, which traditional methods can not used to reconstruct a clear image.
但是随着研究深入,出现稀疏数据成像问题,无法用传统方法重建清晰图像。
2.
This paper focuses on the sparse data interpolation which is based on Kriging method,and an improved method named Regression Kriging method is derivated.
针对稀疏数据的插值问题,基于克里格方法提出了一套应用于数据量少、插值空间广泛的回归克里格方法。
5)  Sparse data
数据稀疏
1.
The key problem in N-gram method is the problem of sparse data which still can not be solved effectively now.
N元文法方法存在的一个突出问题是数据稀疏,而现有的解决数据稀疏的平滑方法并不是很理想。
2.
Based on N-gram models, this paper proposes a three-step method of "word-similar word-part of speech" by incorporating the similar words and solves the problem of sparse data to a large extent.
本文采用N元模型的统计方法对现代汉语中的多音词进行自动标音,通过引入相似词,采取“词形-相似词-词性”三步回退的策略,缓解了数据稀疏问题,实验结果说明这个方法是有意义的。
6)  data sparsity
数据稀疏性
1.
Effective hybrid collaborative filtering algorithm for alleviating data sparsity
一种有效缓解数据稀疏性的混合协同过滤算法
2.
In order to solve the technological problems in the data sparsity and real time recommendation,a customer cooperation recommendation mechanism based on the interest degree vector model was proposed with integrating the traditional customer cooperation filtering technology.
针对数据稀疏性与推荐实时性的技术难题,在结合传统用户合作过滤推荐的基础上,提出了基于兴趣度向量模型的用户合作推荐机制。
补充资料:数据立方体

数据立方体

定义:数据立方体是一类多维矩阵,让用户从多个角度探索和分析数据集,通常是一次同时考虑三个因素(维度)。

当我们试图从一堆数据中提取信息时,我们需要工具来帮助我们找到那些有关联的和重要的信息,以及探讨不同的情景。一份报告,不管是印在纸上的还是出现在屏幕上,都是数据的二维表示,是行和列构成的表格。在我们只有两个因素要考虑时,这就足矣,但在真实世界中我们需要更强的工具。

数据立方体是二维表格的多维扩展,如同几何学中立方体是正方形的三维扩展一样。 “立方体”这个词让我们想起三维的物体,我们也可以把三维的数据立方体看作是一组类似的互相叠加起来的二维表格。

但是数据立方体不局限于三个维度。大多数在线分析处理( olap)系统能用很多个维度构建数据立方体,例如,微软的sql server 2000 analysis services工具允许维度数高达64个(虽然在空间或几何范畴想像更高维度的实体还是个问题)。

在实际中,我们常常用很多个维度来构建数据立方体,但我们倾向于一次只看三个维度。数据立方体之所以有价值,是因为我们能在一个或多个维度上给立方体做索引。

关系的还是多维的?

由于数据立方体是一个非常有用的解释工具,所以大多数 olap产品都围绕着按多维阵列建立立方模型这样一个结构编制。这些多维的olap产品,即molap产品,运行速度通常比其他方法更快,这是因为能直接把索引做进数据立方的结构,方便收集数据子集。

然而,对于非常大的多维数据集, molap方案并不总是有效的。随着维度数目的增加,立方体变得更稀疏,即表示某些属性组合的多个单元是空的,没有集合的数据。相对于其他类型的稀疏数据库,数据立方体往往会增加存储需求,有时会达到不能接受的程度。压缩技术能有些帮助,但利用这些技术往往会破坏molap的自然索引。

数据立方体还可以用其他的方法构建。关系 olap就利用了关系数据库模型。rolap数据立方体是按关系表格的集合实现的(最多可达维度数目的两倍),来代替多维阵列。其中的表格叫做立方单元,代表特定的视图。

由于立方单元是一个常规的数据库表格,所以我们能用传统的 rdbms技术(如索引和连接)来处理和查询它们。这种形式对大量的数据集合可能是有效的,因为这些表格必须只能包含实际有数据的数据立方单元。

但是 rolap缺少了用molap实现时所具有的内在索引功能。相反,给定表格中的每个记录必须包括所有的属性值而任何集合的或摘要的数据。这种额外的开销可能会抵消掉一些节省出来的空间,而隐性索引的缺少意味着我们必须提供显性的索引。

从结构角度看,数据立方体由两个单元构成:维度和测度。维度已经解释过了,测度就是实际的数据值。

记住这点是很重要的:数据立方体中的数据是已经过处理并聚合成立方形式。因此,通常不需要在数据立方体中进行计算。这也意味着我们看到数据立方体中的数据并不是实时的、动态的数据。

立方体中的数据已经过摘要,表示诸如计件销售、店面销售、区域销售、销售纯利和完成订单的平均时间等数据。有了这些数据,分析师能针对一个或全部产品、客户、销售代理等,就这些数字中的一个或全部进行分析。这样,在预测趋势和分析业绩时,数据立方体就非常有用,而表格最适合报告标准化的运作情况。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
 
×
Data from Bing and Google