1) polynomial chaos expression
多项式混沌展开
1.
Combined with a polynomial chaos expression(PCE),this paper applies the stochastic Galerkin method(SGM) to analyze the system response.
通过改进的去耦算法对随机互连线元进行去耦,结合随机伽辽金方法(SGM)和多项式混沌展开(PCE)进行互连分析,进而利用复逼近及二分法给出工艺参数扰动下互连时延的有限维表达式。
2) polynomial chaos expansion
多项式混沌展式
1.
A collocation-based stochastic finite element method(SRSM) has been developed,the formalism of the proposed method is similar to the spectral stochastic finite element method(SSFEM) in the sense that both of them utilize Karhunen-Loeve(K-L) expansion to represent the input,and polynomial chaos expansion to represent the output.
提出了一种基于配点法的谱随机有限元分析方法-随机响应面法(SRSM),这种方法与已有的谱随机有限元方法(SSFEM)类似,都用Karhunen-Loeve级数扩展式表示输入随机场而计算结果的输出用多项式混沌展式表达。
3) polynomial chaos expansion
混沌多项式
1.
An efficient method for constructing polynomial chaos expansion(PCE)is proposed.
本文提出一种构造混沌多项式的高效方法,利用单项式容积法的积分点,通过回归求解混沌多项式系数。
2.
The main research content is as follows:(1) Reduced collocation response surface model (RCRSM) is constructed using polynomial chaos expansion (PCE) with points of monomial cubature rule (MCR).
主要研究内容如下:(1)基于单项式容积法和混沌多项式展开,构造了简约配点响应面模型。
4) generalized polynomial chaos
广义多项式混沌
1.
As no analytical results are available,traditional Monte Carlo simulations are adopted to validate the solutions obtained from generalized polynomial chaos methods.
为了求解含有随机项的广义Burgers方程,采用广义多项式混沌表示该方程的解,使之转化为不含随机项的方程组,进而采用Chebyshev谱配置法进行求解;又因该问题没有解析解,故采用传统的Monte Carlo数值模拟来对比验证所得结果。
5) polynomial expansion
多项式展开
1.
We compare the Fokker Planck equation with the Vlasov equation in the aspects of the origin, physics meaning, solution, and also introduce the method of polynomial expansion to solve the equation.
比较了Fokker Planck方程和Vlasov方程在来源、意义和解法方面的关联和不同 ,同时介绍了一种多项式展开束团耦合模式来求解Fokker Planck方程的方法 ,并在静态分布中包含了势阱畸变的效
6) polynomial expansion
多项展开式
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。