2) partial fractional calculus
分数阶偏微积分
3) fractional partial differential equations
分数阶偏微分方程
1.
This thesis mainly comprises of two parts: Firstly, Crank-Nicholson differencescheme of the fractional partial differential equations and its numerical stability andconvergence are considered; Secondly, the difference scheme of the delay fractionalpartial differential equations and its numerical stability are studied.
本文的研究内容主要分为两个部分:第一,研究了分数阶偏微分方程的Crank-Nicholson差分格式以及格式的稳定性和收敛性;第二,构造了分数阶延迟偏微分方程的数值格式并分析其数值稳定性。
4) high-order PDE
高阶偏微分
1.
Based on analysis the shortages in Tikhonov,total variation and higher order partial difference models,a novel algorithm is proposed by combining the total variation model and high-order PDE ones.
针对传统图像放大处理过程中基于线性插值方法通常导致边缘模糊问题,分析了Tikhonov模型、全变差模型和高阶偏微分模型在图像处理中的优缺点,提出了一种全变差和高阶偏微分模型自适应结合的图像放大模型及推导算法。
5) k-th partial differential
k阶偏微分
补充资料:分数阶积分与微分
分数阶积分与微分
og fractional integration and differentia-
分数阶积分的逆运算称为分数阶微分:若几介F,则f为F的:阶分数阶导数(na ctional deriVative).若0<戊
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条