1) negative Hilbert-Sobolev space
负指数Hilbert-Sobolev空间
2) variable exponent Sobolev space
变指数Sobolev空间
3) Variable exponent Sobolev spaces
变指数Sobolev空间
1.
With some symmetry assumptions and growth conditions on nonlinearities, the existences of infinitely many solutions are obtained by using a limit index theory developed by Li (Nonlinear Analysis: TMA, 25(1995) 1371-1389) in variable exponent Sobolev spaces W_0~(1,p(x)(Ω) and W_1~(1,p(x)(R~N) respectively.
在对非线性项作适当对称性假设和增长性条件后,我们分别在变指数Sobolev空间W_0~(1,p(x))(Ω)和W~(1,p(x))(R~N)中,利用极限指标理论(Nonlinear Analysis:TMA,25(1995)1371-1389)得到了两类方程组的无穷多解性。
2.
In this paper, we consider differential inclusion problem in a bounded domainΩ, involving p(x)-Laplacian of Neumann-typeand Dirichlet-typeWith some suitable assumptions on nonlinearities, the existences of infinitely many solutions are obtained by using nonsmooth version Ricceri\'s variational principle in variable exponent Sobolev spaces W~(1,(p(x)))(Ω) and W_0~(1,(p(x)))(Ω), respectively.
在这篇文章中,我们在有界域Ω上分别考虑了包含p(x)-Laplacian算子的Neumann型的微分包含问题和Dirichlet型的微分包含问题在对非线性项作适当假设后,我们分别在变指数Sobolev空间W~(1,(p(x)))(Ω)和W_0~(1,(p(x)))(Ω)中,利用非光滑型Ricceri变分原理得到了两类问题的无穷多解性。
3.
Ric-ceri (Nonlinear Analysis 70(2009) 3084-3089) in variable exponent Sobolev spaces W_0~(1,p(x))(Ω)×W_0~(1,q(x)(Ω).
在p(x),q(x)与N不同的大小关系下,对非线性项做适当假设和增长性条件,我们在变指数Sobolev空间W_0~(1,p(x))(Ω)×W_0~(1,(q(x))(Ω)中,利用Ricceri三临界点定理(Nonlinear Analysis 70(2009)3084-3089)得同一方程组在不同条件下的三解性。
4) variable exponent Lebesgue-Sobolev spaces
变指数Lebesgue-Sobolev空间
5) Hilbert-Sobolev norm
Hilbert-Sobolev范数
1.
Firstly, through applying Hilbert-Sobolev norm to measure fidelity term, a total variation filter is used to smooth the normal vectors of the level curves of a noise image.
该方法首先引入负指数Hilbert-Sobolev范数度量逼近项,对图像水平曲线的法向量场进行全变差正则化磨光,然后构造出一个曲面拟合模型,拟合磨光后的流场。
6) weighted variable exponent Sobolev space
带权变指数Sobolev空间
补充资料:负体积,负空间
负体积,负空间
negativevolume,negativespace建筑、雕塑或绘画中被封闭的空余空间,它对构图[COMPOSITION]起着重要作用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条