1) lower triangular complex matrix
下三角复矩阵
1.
This Paper presents a kind of matrix inverse arithmetic suitable for ASIC implementation,which could process 1~16 dimension lower triangular complex matrix,and is coded by Verilog HDL.
本论文提出了一种便于ASIC实现的矩阵求逆算法,可以完成对1到16维下三角复矩阵的求逆运算,并用Verilog硬件描述语言进行实现。
2) lower triangular matrix
下三角矩阵
1.
When Components are described by using Markov Process, Y = Ax+Bε the correla-tion solution set model e matrix B is the lower triangular matrix.
当分量用马尔可夫过程描述时,相关解集模型y=Ax十B的矩阵B为下三角矩阵。
3) down triangular Toeplitz matrix
下三角Toeplitz矩阵
1.
According to the theory of groups, two different operations of matrix multiplication were defined in the down triangular Toeplitz matrix.
利用群的知识 ,在下三角Toeplitz矩阵集合中定义了两种不同的矩阵乘法运算 ,都得出该集合构成了一交换群的结
4) matrix in approximate lower triangular form
近似下三角矩阵
5) strictly lower triangular matrix
严格下三角矩阵
6) matrix,lower-triangular
下三角形矩阵
补充资料:三角形矩阵
三角形矩阵
triangular matrix
三角形矩阵「tr如曹山r matrix;Tpe卿二‘H.Mop,”a] 主对角线以下(或以上)的所有元素均为零的方阵(见矩阵(mat血)).在第一种情况下,该矩阵称为上三角形矩阵(叩per triangularn妞tr该),在第二种情况下,该矩阵称为丁手角攀手吟(fower‘r面gularmatrix).一个三角形矩阵的行列式等于它的对角线上所有元素的乘积.0.A.物aHoB。撰【补注】一个能使之成为三角形形式的矩阵称为可三角化矩阵(trlgol祖lizable Inatr认),见可三角化元(tri-gonaliZablee】ell祖nt). 任意秩为r的(nxn)矩阵A,如果它的前;个顺序的主子式均不为零,那么A可以表成一个下三角形矩阵B与一个上三角形矩阵C的乘积,(【AI」). 任一实矩阵A可以分解为形如A=QR,其中Q是正交矩阵,R是上三角形矩阵,称为QR分解(QR一deconl户粥ition),或者分解为形如A=QL,其中Q是正交的,L是下三角形的,称为QL分解(QL一decom详〕sltion).这样的分解在数值计算法中起重要作用,([A2」)、(【A3])(例如对于计算本征值). 如果A是非奇异的,且要求R的对角线上的元素均为正数,那么QR分解A=QR是唯一的,(【A3」),且由Gnml一Schmidt标准正交化过程给出,见正交化(ortllogonal龙ation);岩沉分解(Iwasawadecon1Position).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条