说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 高阶抽象Cauchy问题
1)  higher order abstract Cauchy problem
高阶抽象Cauchy问题
2)  abstract Cauchy problem
抽象Cauchy问题
1.
The fundamental theories of C regularized semigroups are summarized, including the generators, generated theorems, interpolation, extrapolation, and the relation between the C regularized semigroup and abstract Cauchy problem, the basic properties of integrated C semigroups.
:对C正则半群的定义、生成元、生成定理、与抽象Cauchy问题的关系、内外插进行了简述 ,并从抽象Cauchy问题出发介绍了积分C半群的定义及其简单性质。
2.
The mild solution and strong solution are introduced in Banach space for a class of inhomogeneous abstract Cauchy problems whose principal operator is the infinitesimal generator of C-semigroups,and the relations between mild solution and strong solution are discussed.
在Banach空间中,讨论主算子为C半群无穷小生成元的一类非齐次抽象Cauchy问题的mild解与其强解的关系。
3.
The abstract Cauchy problem and the fc-times integrated abstract Cauchy problem play important roles in many practical problems.
Banach空间上抽象Cauchy问题及Κ-次积分抽象Cauchy问题有着非常重要的实际作用,许多物理问题都可模式化为它们;在理论上,有些微分方程或是积分方程等也可以用它们表示。
3)  Complete second order abstract Cauchy problems
完全二阶抽象Cauchy问题
4)  generalized Abstract Cauchy problems
广义抽象Cauchy问题
1.
Wellposedness of generalized Abstract Cauchy problems
广义抽象Cauchy问题的适定性
5)  k-times abstract Cauchy problem
k-次积分抽象Cauchy问题
6)  Abstract second order boundary value problem
抽象二阶边值问题
补充资料:Cauchy特征问题


Cauchy特征问题
Caudly characteristic problem

  对于广泛的一类双曲型方程和抛物型方程,在自变量xl,xZ,…,x,,t的空间E。十1中,以确定方式定向的非闭”维曲面S可以作为它的给值面.例如,如果S是类空曲面,那么(翅.由y问题(Cauchy Problem)(初值给在S上)的提法总是适定的.在Cauchy特征问题中给值面总是特征流形(或者它的某个确定部分).在此情形Cauchy间题可以没有解;如果有解,也可以是不唯一的. 例如,对方程伍=1,xl=x) u:r=0在特征t=0上给值 u(x,0)=叹尤),u‘(x,0)=v(x)的Cauchy特征问题是不适定的.如果Cauchy特征问题的解存在,那么从方程和第二个初始条件导出的问题可解的必要条件是v‘(x)=O,即仅当,(x)=常数=“时Cau由y特征问题的解可以存在.在此情形,如果;(x)任CZ,t)0,解事实上存在,并由下列公式给出: u(x,t)=代x)+at+试t),其中p(t)是C,类的任意函数,t)0,满足条件p(0)=p,(0) =0. 为使线性双曲型方程组的Q公勿特征问题的解存在,要求方程组的增广矩阵的阶等于沿特征曲面S的退化矩阵的阶. 存在广泛的一类双曲型方程和方程组,特征曲面可以作为它们的给值面.例如,对于方程 月 艺叭.:‘一u,,=0,(l) 万=l它的特征曲面S是锥面 仓(x,一x?户一(,一,。尹一。.(2) ,二1Cauchy特征问题为:求方程(l)在锥面(2)内正则的解,它在锥面(2)上取预先给定的值. 在一个空间变量(n=1,x:”x)的情形,锥面(2)成为一对通过点(x。,动的直线(x一x。)’=(t一t0)2.这两条直线将变量x,t的平面凡划分为四个角.设域。是这些角中的一个.在此情形特征问题被称为Goursat.问题:确定方程 “”一ur,=0在域Q正则的解u(x,O,它满足条件 u=中,若x一xo=t一to, u=伞,若x一xo=to一l, 中(x。,t。)=认x。,t。).如果特征曲面S同时是退化型或退化阶的曲面,那么Cauchy特征问题可以是适定的. 方程 少用喻一ux,+aux+b巧十cu=f(3)当y>O时是双曲型的,退化线y=0是特征线.当0  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条