1) method ofGalerkin
咖辽金方法
2) galerkin approach
伽辽金方法
1.
The equations in the model were discretized by the assumption mode method and the Galerkin approach,and solved by the Runge-Kutta numerical method.
用假设模态法和伽辽金方法使方程离散化,然后用Runge-Kutta方法计算。
3) Galerkin method
迦辽金方法
1.
Elements are triangular in the spatial domain and rectangular in the angle domain- Galerkin method is used to derive a set of simultaneous algebraic equations.
整个求解空间区域和角度区域分别采用三角形和矩形单元划分,然后利用迦辽金方法得到一个以网格点处角通量为未知数的线性联立代数方程组,方程组中的系数矩阵的存储采用了压缩存储技术。
4) Galerkin method
伽辽金方法
1.
Wavelet Galerkin method applied to wave equations with variable coefficients;
小波伽辽金方法应用于变系数波动方程
2.
The Galerkin method is applied to investigate the effeCtive conductivity of strongly nonlinear composite media.
应用伽辽金方法研究了强非线性复合介质的电导性质;讨论了杂质和基质都服从J=σ|E|2E的本构方程;在只保留最低阶近似的情况下,导出了这类复合介质的非线性有效电导率的近似解析公式。
3.
The existence of a time-periodic solution is proved by the Galerkin method,Leray-Schauder fixed point theorem andpriori estimates.
利用伽辽金方法、Leray-Schauder不动点原理和先验估计,证明了在带周期外力扰动和周期边界条件的影响下,非线性发展Ginzburg-Landau方程ut=(l+iα)Δu-(k+iβ)u2u+γ+f的时间周期解,其中f(t,x)是一个关于时间变量t的以ω为周期的函数。
5) Galerkin methodEl
增量伽辽金方法
6) Galerkin variational method
伽辽金变分方法
1.
The fundamental solution to the orthotropic laminated plates under large deflection self oscillation was obtained by means of mathematical analysis and the oscillatory was figured out using Galerkin variational method.
首先用解析方法得到了正交异性层合板在大位移自振时的基本解 ,又用伽辽金变分方法求出了非线性振动时的频率 ,最后用网格法算出了最佳铺层
补充资料:白辽辽
1.见"白??4A4D"。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条