说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 升降算子
1)  raising and lowering operators
升降算子
1.
Using the factorization method, four kinds of raising and lowering operators of the Landau system (a planer charged particle moving in a uniform magnetic field) are derived and the corresponding selection rules and conserved quantum numbers are discussed.
用因式分解法求出了Landau体系(带电粒子在垂直于均匀磁场的平面内的运动)的四类升降算子,并讨论了相应的选择定则和守恒量子
2.
In this paper,four kinds of raising and lowering operators of a \$k-\$dimensional isotropic harmonic oscillator are constructed; the corresponding systems of supersymmetric quantum mechanics are further constru cted,and their general form is discussed.
构造了 k维各向同性谐振子的四类升降算子
3.
Using the factorization method,four kinds of raising and lowering operators of a charged particle moving in a uniform magnetic field are derived and the corresponding selection rules and conserved quantum numbers are discussed.
用因式分解法求出了带电粒子在垂直于均匀磁场的平面内运动体系的四类升降算子,并讨论了相应的选择定则和守恒量子数
2)  raising and lowering operators
升降算符
1.
Normalization coefficients of primary quantum number raising and lowering operators of an Multidimensional hydrogen atom;
多维氢原子主量子数升降算符的归一化系数
2.
Four kinds of raising and lowering operators of the Landau system;
Landau系统四类规范不变的升降算符
3.
They are the methods of angle momentum coupling,linear combination and raising and lowering operators,respectively.
利用了3种不同方法:角动量耦合法、线性组合法和角动量升降算符法,得到了四电子体系的自旋波函数,对构造多电子体系自旋波函数有重要意义。
3)  ladder operator
升降算符
1.
Furthermore, the ladder operators are given, which is helpful to the calculation of matrix elements.
重新定义其升降算符,便于求解矩阵元。
4)  ladder operator
升、降算符
1.
With recurrence formulas between the eigen functions, ladder operators for one-demensional infinitely deep square potential well are constructed, and the corresponding spectrum-generating algebra is obtained from these ladder operators.
利用本征函数间的递推公式,构造出了一维无限深阱势的升、降算符,并由此得到了相应的谱生成代数。
2.
Using supersymmetric quantum mechanics, ladder operators for a new exactly solvable potential are constructed, and the eigen values and the corresponding eigen functionsare obtained from the ladder operators.
利用超对称性构造出了一种新精确可解势的升、降算符,由升、降算符求出了能量本征值和波函数。
5)  The Ascent and Descent of Semigroups of Operators
算子半群的升与降
6)  Accelerating and decelerating algorithm
升降速算法
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条