1) Biped robot
两足步行机器人
1.
Lateral stabilization control of underactuated biped robot;
欠驱动两足步行机器人侧向稳定控制方法研究
2.
A biped robot with elastic damping elements is investigated.
在研究一种弹性腿机构的基础上,建立了两足步行机器人的动力学模型,设计了上阶梯的动步态。
3.
By means of it, the fuzzy adaptive PID controller of the biped robot named NAIWR 1 has been described.
本文对模糊控制、自适应控制和PID控制进行了综合研究,实现了自行研制的NAIWR-1智能两足步行机器人的模糊自适应PID控制,并用模糊递阶协调方法进行关节到位协调送数,成功实现了两足步行机器人的稳定行
2) biped walking robot
两足步行机器人
1.
The development of motion control systems of biped walking robots is reviewed in the paper, and a new kind of communication system - SERCOS is introduced.
本文介绍两足步行机器人运动控制系统结构的新发展 ,并介绍一种适于多轴运动控制的通信系统—— SERCOS总线 ,它的通信速率高 ,实时性和确定性好 ,很适合机器人各关节的协调运动控制 ,便于构成分布式的机器人控制系统结构 。
2.
So, the researching on biped walking robot has become an active task in robotics.
两足步行机器人具有类似于人类步行的特点,对环境有较好的适应性。
3) biped walking chair robot
两足步行椅机器人
1.
Stability control for biped walking chair robots;
两足步行椅机器人的稳定性控制
2.
Influence of mechanical parameters of biped walking chair robot on ZMP(Zero Moment Point) stability margin is studied.
研究了两足步行椅机器人的机械参数对步行ZMP(Zero Moment Point)稳定裕度的影响。
4) biped walking-chair robot
两足步行椅机器人
1.
A biped walking-chair robot serves the disabled by replacing their wheel chairs or artificial limbs.
两足步行椅机器人是一种替代轮椅或假肢、为残疾人服务的助残机器人。
2.
This paper presents an overall mechanism design for the biped walking-chair robot.
主要介绍了两足步行椅机器人的整体机构设计。
5) biped walking robot
双足步行机器人
1.
Gait Planning of a Biped Walking Robot;
双足步行机器人的步态规划
2.
Moreover,a step program for the biped walking robot is designed.
在AVR系列单片机基础上,提出一种并行积分式多路PWM波产生算法,具有较高的控制精度,可控制大量舵机,并以此设计出双足步行机器人行走步伐程序,实验证明舵机运行稳定,追随性能好,速度调节方便;机器人行走稳定,步伐频率高、步幅大,程序具有很强的通用性。
3.
Furthermore, the system can be used to measure the actual ZMP trajectory of a biped walking robot.
提出一种多维力测力平台阵列系统 ,通过机器人行走过程中脚部与平台接触力的测量 ,并根据Vuko bratovic关于ZMP的定义 ,得到机器人行走过程的ZMP实际轨迹信息 ,为双足步行机器人的稳态行走步态规划提供参考依据 。
6) multi-legged walking robot
多足步行机器人
1.
A CPG model of multi-legged walking robot gait controlling;
一种用于多足步行机器人步态控制的CPG模型
2.
Research on the Joint Control System of a Modular Multi-Legged Walking Robot;
模块化多足步行机器人关节控制系统研究
3.
Because of the multiped walking character, multi-legged walking robots own obvious priorities in motion and working under unstructured and unconfirmed environment comparing to wheeled robots.
相对于轮式机器人而言,多足步行机器人在非结构化环境中具有明显的优势。
补充资料:两足步行机器人
模拟人类用两条腿走路的机器人。两足步行机器人适于在凸凹不平或有障碍的地面行走作业,比一般移动机器人灵活性强,机动性好。1972年,日本早稻田大学研制出第一台功能较全的两足步行机器人。美国、南斯拉夫等学者也研制出各种两足走行机器人模型。两足步行模型是一个变结构机构,单脚支撑为开式链,双脚支撑为闭式链。支撑点的固定靠摩擦力来保证,质量分布和重量大小都直接影响静态和动态的稳定性。为保证行走过程中姿态的稳定性,对行走步态应加严格的约束。图中示出了具有11个动力关节的两足步行模型的自由度分配。这些关节以旋转轴的方向分为纵摇轴、横摇轴和偏航轴。纵摇轴实现前进方向的重心移动,横摇轴实现左右方向的重心摆动,偏航轴转换方向。在行走过程中,通过纵摇轴的髋关节、膝关节和踝关节的协调动作,在前进方向上移动重心;通过上驱体关节使上身左倾或右倾,移动上身塔载调节重心;通过偏航轴的腰关节转换方向。关节的驱动能源主要有气压、液压和电动三种。气压式重量轻、安全便宜,但因空气的可缩性,在变负载情况下,稳定性差。液压式输出功率大、快速性好,但需配备动力组件。例如,日本早稻田大学加藤一郎教授研制的WD-10RD,是具有12个自由度的液压驱动机器人。电动式结构简单、控制容易。但功率密度低、价格较高。
两足走行的行走方式有静态步行、准动态步行和动态步行三种。①静态步行:两足步行机器人靠地面反力和摩擦力来支撑,绕此合力作用点力矩为零的点称为零力矩点(ZMP)。在行走过程中,始终保持ZMP在脚的支撑面或支撑区域内。②准动态步行:把维持机器人的行走分为单脚支撑期和双脚支撑期,在单脚支撑期采用静态步行控制方式,将双脚支撑期视为倒立摆,控制重心由后脚支撑面滑到前脚支撑面。③动态步行:这是一种类人型的行走方式。在行走过程中,将整个驱体视为多连杆倒立摆,控制其姿态稳定性,并巧妙利用重力、蹬脚和摆动推动重心前移,实现两足步行。动态步行涉及机构控制和能源等难题,目前仍处于研究阶段,两足步行机器人可用于宇宙探测、排险及军事等方面。
两足走行的行走方式有静态步行、准动态步行和动态步行三种。①静态步行:两足步行机器人靠地面反力和摩擦力来支撑,绕此合力作用点力矩为零的点称为零力矩点(ZMP)。在行走过程中,始终保持ZMP在脚的支撑面或支撑区域内。②准动态步行:把维持机器人的行走分为单脚支撑期和双脚支撑期,在单脚支撑期采用静态步行控制方式,将双脚支撑期视为倒立摆,控制重心由后脚支撑面滑到前脚支撑面。③动态步行:这是一种类人型的行走方式。在行走过程中,将整个驱体视为多连杆倒立摆,控制其姿态稳定性,并巧妙利用重力、蹬脚和摆动推动重心前移,实现两足步行。动态步行涉及机构控制和能源等难题,目前仍处于研究阶段,两足步行机器人可用于宇宙探测、排险及军事等方面。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条