1) Melnikov method
Melnikov法
2) Melnikov method
Melnikov方法
1.
Chaotic behaviors from homoclinic crossings are analyzed with an improved Melnikov method and are compared for the systems with a periodically external excitation, with a linear periodically parametric excitation, or with a nonlinear periodically excitation.
利用改进的Melnikov方法分析了由于同宿轨道的横截相交而产生的混沌行为。
2.
Melnikov method is an effectively mathematical method which is usually used to prove the existence of chaos in the sense of Smale horseshoes.
Melnikov方法是用来判定一个系统是否存在Smale马蹄意义下的混沌的一种有效的数学方法,它通过测量Poincare映射的双曲不动点的稳定流形与不稳定流形之间的距离来判定系统横截同宿点的存在性及Smale马蹄意义下的混沌的存在性。
3.
Using the Melnikov method, the system s Melnikov integral is computed and the parametric threshold for chaotic motions is obtained.
利用 Melnikov方法 ,通过计算扰动系统的 Melnikov积分 ,分析了系统在参数发生变化时的同宿分岔 ,得出系统产生混沌运动的参数阈值 ,并讨论了有界噪声激励对系统的混沌运动的影响。
3) Melnikov's method
Melnikov方法
4) stochastic Melnikov method
随机Melnikov方法
1.
By using the stochastic nonlinear dynamics theory, based on the stochastic Melnikov method and rate of phase space flux theory, the dynamical stability of ships in random ocean wave and the method on reducing its capsizal are studied.
应用随机非线性动力系统理论,借助随机Melnikov方法及rate of phase space flux理论,从系统稳定性的角度分析了船舶在随机波浪上的运动稳定性。
5) higher-order Melnikov method
高阶Melnikov方法
1.
So higher-order Melnikov method is developed to determine the existence of .
产生该结果的原因被归之为在经典的Melnikov方法中只采取了一阶近似,因而高阶Melnikov方法被发展用来判断超次谐周期解的存在性。
6) high-dimensional Melnikov method
高维Melnikov方法
1.
From the averaged equations obtained here, the theory of normal form was used to give the explicit expressions of normal form, based on which, high-dimensional Melnikov method was utilized to analyze the global bifurcations and chaotic motions of composite laminated rectangular thin plates.
应用Kovacic等人提出的高维Melnikov方法研究复合材料层合薄板的脉冲混沌运动,理论分析发现在参数激励和外激励作用下系统存在Smale马蹄意义下的混沌运动并存在脉冲跳跃轨道。
补充资料:法性属法为法性土
【法性属法为法性土】
谓真如法性之理,譬如虚空,遍一切处,乃是法身所证之体,即为所依之土,故名法性属法,为法性土。
谓真如法性之理,譬如虚空,遍一切处,乃是法身所证之体,即为所依之土,故名法性属法,为法性土。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条