说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 随机Melnikov过程方法
1)  Stochastic Melnikov Process method
随机Melnikov过程方法
2)  stochastic Melnikov process
随机Melnikov过程
1.
The stochastic Melnikov process is derived and the critical value of excitation amplitude for the onset of chaotic motion is obtained based on the stochastic Melnikov process having simple zero in the mean square sense.
推导了随机Melnikov过程 ,由广义过程在均方意义上出现简单零点给出了可能出现混沌的临界激励幅值 ,发现在噪声强度大于一定值后 ,临界幅值均随噪声强度的增大而增
3)  stochastic Melnikov method
随机Melnikov方法
1.
By using the stochastic nonlinear dynamics theory, based on the stochastic Melnikov method and rate of phase space flux theory, the dynamical stability of ships in random ocean wave and the method on reducing its capsizal are studied.
应用随机非线性动力系统理论,借助随机Melnikov方法及rate of phase space flux理论,从系统稳定性的角度分析了船舶在随机波浪上的运动稳定性。
4)  random Melnikov mean-square criterion
随机Melnikov均方准则
1.
The parameter region for random jumping of ships is demarcated primarily by the random Melnikov mean-square criterion.
应用随机Melnikov均方准则初步划分了船舶发生随机跳跃的参数区域后,由路径积分法求解横摇运动微分方程,得到船舶横摇响应的联合概率密度函数。
5)  Melnikov method
Melnikov方法
1.
Chaotic behaviors from homoclinic crossings are analyzed with an improved Melnikov method and are compared for the systems with a periodically external excitation, with a linear periodically parametric excitation, or with a nonlinear periodically excitation.
利用改进的Melnikov方法分析了由于同宿轨道的横截相交而产生的混沌行为。
2.
Melnikov method is an effectively mathematical method which is usually used to prove the existence of chaos in the sense of Smale horseshoes.
Melnikov方法是用来判定一个系统是否存在Smale马蹄意义下的混沌的一种有效的数学方法,它通过测量Poincare映射的双曲不动点的稳定流形与不稳定流形之间的距离来判定系统横截同宿点的存在性及Smale马蹄意义下的混沌的存在性。
3.
Using the Melnikov method, the system s Melnikov integral is computed and the parametric threshold for chaotic motions is obtained.
利用 Melnikov方法 ,通过计算扰动系统的 Melnikov积分 ,分析了系统在参数发生变化时的同宿分岔 ,得出系统产生混沌运动的参数阈值 ,并讨论了有界噪声激励对系统的混沌运动的影响。
6)  Melnikov's method
Melnikov方法
补充资料:独立增量随机过程


独立增量随机过程
tochastic process with independent increments

独立增里随机过程「劝刘巨浦c拌.义冠弓初山侧吻创如t加盆,曰n臼lts;cjl抖浦.咸nP0uecc c Ite3洲cltMuM.uP-“P啊eHll,刚』 一种随机过程(s勿比邵石cp~)X(t),对任意自然数”和所有实数O蕊:,<口,簇:2<吞2簇…蕊,。<口。,增量X(乃;)一X(‘J),…,X(刀。)一X(,。)是相互独立随机变量,独立增量随机过程称为齐次的(holll。罗11印us),如果X(:+h)一X(。),0(戊,oO,当t’,t时 p{}Y(t‘)一Y(t)}>。}~0.W汹犯r过程(Wiemr Proo巴粥)和Pb远翔1过程(Po哪npr(x芜‘s)是随机连续的独立增量随机过程的例子(前者的实现以概率1连续,后者的实现是跳跃值等于l的阶梯函数).独立增量随机过程的一个重要例子是稳定过程(见稳定分布(stable面tribution)).随机连续的独立增量随机过程(以概率1)只有第一类间断点.这种过程的值的分布对任意t是无穷可分的(见无穷可分分布(inf谊此ly一山北ible dis州bution))可以用特征函数(chara叱ristic ftmct」on)方法研究独立增量随机过程.关于过程穿越边界的概率以及第一次穿越时间的概率分布等问题,可用所谓因子分解恒等式(fac-tori山tion jdenti往留)来解决.”协月片,巴爹‘人队见随饥双桂L StDchasl」e Process). 刘秀芳译陈培德校
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条