1) regular simplex
正则单形
1.
The regular simplex was summarized,which pointed out new characters of regularsimplex.
指出了正则单形的新性质,如棱长为a的n维正则单形Ωn的体积V有下述公式1()!2Vn ann=+,任何n维正则单形?n的所有顶点角之和1 12 21n i(1)arcsin(1)(1 1)nin n∑=+α=++?+n,任何n维正则单形的所有二面角之和1 1≤i<∑j≤n+βij=???n 2+1arccos1/n,并借助于矩阵理论对已有的性质给出直观性的证明。
2.
This paper proves that the sum of the square of the distance of any paint on m-dimensional spherical surface whose centre is the centre of the regular simplex from each edge is an invariable,thus obtains that the supposition in paper[1] is tenable when i=m-1.
该文证明了M维欧氏空间中以正则单形的中心为球心M维球面上任一点至各条棱距离平方和为不变量,从而获得文[1]中的猜想当i=m-1时是成立的。
3.
This article gives the volume inequality of higher dimension simplex about interface and dihedral angle, then sets up regular simplex s volume formula which differs from definition.
给出了高维单形与界面有关的体积不等式和与二面角有关的体积不等式,进而建立正则单形的有别于定义式的体积公式。
2) regular semisimple
正则半单
1.
The simple modules for W(m;n) with generalized p-character χ were described by reduction when χ was regular semisimple.
描述了当χ正则半单时W(m;n)的不可约广义χ-约化表示。
3) regular body
正则形体
4) canonical form
正则形式
1.
Higher order Routh equations of a non-holonomic mechanical system and its canonical form;
非完整力学系统的高阶Routh方程及其正则形式
2.
The feature of symmetric canonical form and the relation between the LU polynomial invariants and SLOCC classification in pure three-qubit case are presented at first.
首先介绍了三量子比特纯态情形对称正则形式的特点和LU多项式不变量与随机LOCC分类的关系。
5) regular spread
正则展形
1.
The paper showed the configurational properties of the Klein s representation in PG (5,q) of the regulus and regular spread of PG (3,q ) { (q≥5) is a odd integer}.
q)(q≥=5是奇数)的半二阶曲面和正则展形在PG(5。
6) regular fractal
正则分形
补充资料:正则概形
正则概形
regular scheme
正则概形[regular se触Irle;pery,pH翻cxeMaJ 每个点的局部环尸x,*都是正则的(见正则环(re-酬arnng(incommuta石vealge比1))概形(schelr犯).对于代数闭域k上有限型的概形,正则性等价于微分层。知*是局部自由的.正则局部环是唯一分解环(factor淤朋g),所以在正则概形(X,岁、)里的任何余维数1的闭约化不可约子概形局部地由一个方程给出(见【2」).一个重要的问题是构造一个正则概形(X,岁:),使它具有给定的有理函数域以及带有到某个基概形S上的真态射(proper ITIOrphisln)X~5.当S是特征数O的域的谱时,已经解决(见【3]).对于素特征数的低维概形以及S是djmx/S(1的Dedek由d整环的谱时也已经解决(见【1」).【补注】有时正则概形称为光滑概形(sITlc幻th sche·联),这意味着结构态射X~S是光滑态射(slno-oth morP址sm)(这里S是域的谱,见环的谱(sPec-tr确of a nng)).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条