1) partial product
部分积
1.
High-radix Booth is of great importance for speeding up multiplying by reducing the number of partial products,but it also adds great burdens on the adder of the multiplier in the aspects of timing and area.
文章在分析了数字电路实现乘法运算的基本原理及部分积优化原理的基础上,提出了一种具有动态加速浮点乘法运算功能的变基Booth算法,该算法可以在不增加加法器负担的条件下收到较好的加速效果。
2.
The former reduces the number of partial product and enhances the generating speed of partial product;the latter has a regular layout because of the simplicity of the necessary interconnections between the compressors,and it reduces the spurious switching in the circuit to save power dissipation.
为了提高乘法器的综合性能,提出了一种新的冗余Booth三阶算法和跳跃式Wallace树结构,前者可以减少部分积的数目,提高部分积的产生速度,后者可以加快部分积的压缩,减少电路内部的伪翻转,从而降低功耗。
3.
This paper presents a novel fast algorithm, whose partial products come from the components of the much lower rank multiplier and square.
针对二进制补码平方运算的特点 ,提出了一种快速实现算法 ,即利用专用集成电路设计中的标准单元库中低位乘法 (平方 )构件或通过其他算法实现的模块 ,并经部分积重组而形成更少的部分积 ,行数仅 5行 ,与平方位宽无关 ,极大地缩短了加法阵列的计算时间 ,同时在一定程度上减少了系统所用资源 。
2) partial integration
分部积分
1.
By using differentiator series method,the formula of partial integration is obtained.
用微分算子级数法得到分部积分公式,使一类积分计算变得十分简单。
3) integration by parts
分部积分
1.
A generalization of formula of integration by parts and it s application;
分部积分公式的推广及其应用
2.
This paper,by using the formula of sum-subtraction transform,improves the formula of integration by parts to get the integration by parts to further establish under the condition that derivable function u(x),v(x) in the interval and the integral ?bau(x)dv(x) still exist.
本文利用和差变换公式,对分部积分公式进行了推广,得到函数u(x),v(x)在区间[a,b]上可导且b!au(x)dv(x)存在的条件下分部积分公式仍然成立,并结合数学分析教材中所给出的可积函数类,得到相应的两个推论。
4) subsection integral
分部积分
1.
The paper mainly discusses a simply way of the subsection integral and illustrates its application with some examples.
本文主要讨论了分部积分法的一种简便计算方法,并举例说明该方法的使用。
2.
This article intensifies and argues the median of the first median theory on integral calculus, and the second median theory on integral calculus by Abel transform and subsection integral as well.
文章对积分第一中值定理的中值进行加强且论证 ,并对积分第二中值定理分别用Abel变换和分部积分两种方法进行讨
5) Integral by parts
分部积分
1.
Through the analysis of several examples for integral by parts, this paper shows that two-column differention-integral method is simple and direct, and can be widely used in the teaching of integral by parts.
通过几种常见分部积分的例证分析,表明表格法简捷,能广泛地应用于分部积分的教学中。
6) partial integration
部分积分
补充资料:积积
1.长久累积。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条