1) partial area method
部分面积法
1.
Design of flow meter based on partial area method;
基于部分面积法的流量计算仪设计
2) Method of integral area
积分面积法
3) area integration method
面积积分法
4) integration by parts
分部积分法
1.
A New Classification Methods for Functions: The Confirm Principles of Key Function in Integration by Parts;
一种新的函数分类方法——分部积分法关键函数的确定原则
2.
As one of the two basic approaches in indefinite integral calculations, integration by parts functions with a key in the proper choice of u and v ; especially the repetition of such choices keeps the students groping in the dark.
分部积分法是不定积分计算中两种重要的基本方法之一,它的关键是正确地选择u,v',尤其是需要多次选择u,v'时,学生盲目性很大,因此,在分部积分法的教学中提出两点改革。
3.
With integration by parts as a guide,this paper further gives quick accurate and new methods for solving integrals such as ∫x ne ax d x and ∫x n sin ax d x,and presents a general conclusions expressed by formula.
本文以分部积分法为导向,进一步给出求解如∫xneaxdx,∫xnsinaxdx等类型积分的快速而又准确的新方法,并且给出公式性的一般结论。
5) local Lusin-area integral
局部Lusin-面积积分
1.
The author establishes the boundedness in local BMO space of local Littlewood-Paley operators,which include localg-function,local Lusin-area integral and local g*λ-function(1<λ<∞).
建立了局部Littlewood-Paley算子,即局部g-函数、局部Lusin-面积积分及局部gλ*-函数(1<λ<∞),在局部BMO空间上的有界性。
6) integration by partial fraction
部分分数积分法
补充资料:面积法
面积法
area method
面积法【~me伪叻;皿吐旧.以d MeIO口1 借助于面积定理(见面积原理(arca一PrindPle”解决单叶函数论中的问题的一种方法.[补注1
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条