1) sub-involutory matrix
次对合矩阵
1.
In addition,we studied the relation between symmetric matrix and sub-involutory matrix,and the relation between symmetric matrix and sub-orthogonal matrix,which have been proved theoretically.
研究了次对称矩阵的性质,次对称矩阵与次对合矩阵,次正交矩阵的关系,并加以理论证明,得到了一些重要的结论。
2) subsymmetric matrix
次对称矩阵
1.
By adopting the concepts of subsymmetric matrix,P-semiorthogonal matrix and P-semisymmetric matrix,their finite tensor products of subsymmetric matrix,P-semiorthogonal matrix and P-semisymmetric matrix are studied,and many new results are obtained.
利用次对称矩阵、P-亚正交矩阵与P-亚对称矩阵的概念,研究了它们的有限个矩阵张量积分别为次对称矩阵、P-亚正交矩阵与P-亚对称矩阵,得到许多新的结果。
3) The diagonal matrix
次对角矩阵
4) sub-symmetric matrix
次对称矩阵
1.
The sub-orthogonal matrix and the sub-symmetric matrix;
次正交矩阵与次对称矩阵
5) involutory matrix
对合矩阵
1.
The similar canonical form of involutory matrix on integral number ring is given,and the unigue of similar canonical form of involutory matrix is proved in this paper.
给出了整数环Z上对合矩阵的相似标准型,并证明了其唯一性。
2.
In this paper,similar canonical form of involutory matrix on integral number ring is given,and we prove that similar canonical form of involutory matrix is unique.
给出了整数环上对合矩阵的相似标准型,并证明了其唯一性。
6) sub congruent matrix
次合同矩阵
补充资料:次对
1.犹轮对。 2.待制官的别称。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条