1) atom functi
位元函数
1.
The graphics technology was used to label the area and the feature of the abnormal section with WINDOWS atom functions.
该系统不仅可以较真实的色彩显示各种状态下的眼底图像 ,而且结合了基于WINDOWS位元函数的图形学技术 ,可以动态地演示病变的部位与病变特
2) function of the location number
位数函数
3) function of several variables
多元函数
1.
In this paper,we discussed the the extremum of function of several variables,and generalized the result of paper[2],Then we give the method of solving the extrme value of n-component function using first class partial derivative.
讨论了多元函数极值的问题,推广了文献[2]的结果,并给出了利用一阶偏导数求多元函数极值的方法。
2.
The teaching of function of several variables is a difficult point in higher mathematics teaching.
多元函数的教学是高等数学教学中的一个难点。
4) function of many variables
多元函数
1.
The sufficient condition of the extreme value of function of many variables;
多元函数极值判别法推广
2.
Seeking the maximum and minimum of function is the perpetual topic in the medium-sized mathematics,and the function of many variables are difficulties.
求最值问题是中等数学永恒的话题,其中,多元函数求最值是难点。
5) binary function
二元函数
1.
Distingnishing again on the extreme point of binary function;
二元函数极值点的再判别
2.
A Talk of The Relation of Certain Concepts In Binary Function Differential Calculus;
浅谈二元函数微分学某些概念间的关系
3.
This paper defines a binary function related to Schwarz inequation,investigates its properties and gives some refinements for Schwarz inequation.
定义一个与Schwarz不等式相关的二元函数,研究了它的性质,并由这些性质对Schwarz不等式进行了若干加细。
6) dualistic function
二元函数
1.
Experimental result shows that the non-uniform flux of open channel is single-valued corresponding to the opening angle of the plate and water depth in front of the plate,and satisfies the dualistic function.
通过试验可知:细长板开启角度、明渠非均匀流流量与板前水深三者单值对应,并满足二元函数的变化关系。
2.
The concept of partial derivative & directional derivative of multivariate function is presented for deducing the directional derivative & geometric meaning of Dualistic function.
利用多元函数的偏导数与方向导数的概念给出二元函数f(x,y)的方向导数及其几何意义,然后进一步给出了二元函数沿任意方向L的二阶方向导数2f/l2。
补充资料:解析函数元
解析函数元
analytic function, element of an
解析函数元[anai泌c腼由皿,element ofan;知姗郎~“.曰加甫中扒峨u.] 按照某个解析结构给出的复变量z的平面C内的区域D与在D上给定的解析函数f(z)的集合(D,f),这个结构能有效地实现f(z)到它的整个存在区域的解析开拓,形成一个完全解析函数(~Plete analytic funC-tion).解析函数元素最简单和最常用的形式是用幂级数 a0 f(z)=艺e*(z一a广(l) k二0及其中心为a(乖枣的宁J少(Cen‘re of an elemen‘)),收敛半径为R>o的收敛圆盘D={:“C:}:一al
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条