1) multivariate functions
n元函数
1.
A sufficient condition about extreme value of multivariate functions was given, and according elementary transformation of matrix, established a convenient judgement method for extreme value of multivariate functions, finally an example was given.
给出了 n元函数极值的一个充分条件 ,并结合矩阵的初等变换建立了 n元函数极值的一种快速判别法 ,最后给出了一个例
2) n-variable implicit function
n元隐函数
1.
Hesse Matrix of Sufficient Condition for Extrema of n-variable implicit function;
判定n元隐函数取极值的充分条件Hesse矩阵
3) n-ary truth-value fuctional set
n元真值函数集
4) n-element rough function
n元粗糙函数
5) quadratic functions with n unknowns
n元二次函数
1.
With the help of the solid quadratic type theory and the broad converse of matrix,the author offers the full and essential conditions of the maximum and the minimum in the quadratic functions with n unknowns and supplies the solutions to the maximum and the minimum.
利用实二次型理论和矩阵的广义逆给出了n元二次函数存在最大或最小值的充分必要条件 ,以及最值点和最值的计算方法 。
6) n-ary absolutely continuous function
n元绝对连续函数
1.
It defines n-ple derivative,n-ary absolutely continuous function,generalized n-ple primitive function and Newton n-ple integral.
定义了n重导数 ,n元绝对连续函数 ,广义n重原函数及牛顿n重积分 。
补充资料:解析函数元
解析函数元
analytic function, element of an
解析函数元[anai泌c腼由皿,element ofan;知姗郎~“.曰加甫中扒峨u.] 按照某个解析结构给出的复变量z的平面C内的区域D与在D上给定的解析函数f(z)的集合(D,f),这个结构能有效地实现f(z)到它的整个存在区域的解析开拓,形成一个完全解析函数(~Plete analytic funC-tion).解析函数元素最简单和最常用的形式是用幂级数 a0 f(z)=艺e*(z一a广(l) k二0及其中心为a(乖枣的宁J少(Cen‘re of an elemen‘)),收敛半径为R>o的收敛圆盘D={:“C:}:一al
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条