1) Schauder fixed point theorem
Schauder不动点定理
1.
The existence of a time-periodic solution is proved by using the Galerkin method and the Leray-Schauder fixed point theorem.
本文对一类含扩散项和非齐次项的凝血系统,应用Galerkin方法和Leray-Schauder不动点定理证明了时间周期解的存在性。
2.
By using Laray-Schauder fixed point theorem,several existence theorems of solution are established for the class of equations.
通过应用Schauder不动点定理,得到了这类方程的解的几个存在性定理。
3.
The existence of solution for threepoint boundary value problem with a first order derivative and utmost growth nonlinearitiesx″(t)+f(t,x(t),x′(t))=0x′(0)=0,x(1)=αx(η)where f satisfies Caratheodory condition,α≠1,η∈(0,1),is proved by use of Schauder fixed point theorem.
应用Schauder不动点定理,讨论三点边值问题x(″t)+f(t,x(t),x(′t))=0x′(0)=0,x(1)=αx(η)解的存在性,其中α≠1,η∈(0,1),非线性项f满足Caratheodory条件和至多增长条件。
2) schauder fixed-point theorem
Schauder不动点定理
1.
Under the approxiate conditions,the existence of positive periodic solutions is established by using Schauder fixed-point theorem and theory of monotone dynamical systems of functional differential equations.
利用泛函微分方程的单调动力系统理论和Schauder不动点定理,在合适的条件下建立了一类滞后型泛函微分方程正周期的存在性。
2.
By using the Schauder fixed-point theorem, the existence of solutions for the boundary value problems of a class of nonlinear integro-differential equations in Banach spaces is obtained.
运用Schauder不动点定理,获得了Banach空间中一类非线性混合型积分-微分方程边值问题解的存在性。
3.
By using the Schauder fixed-point theorem,the existence of solutions is obtained for the boundary value problems of a class of integro-differential equations in Banach spaces.
运用Schauder不动点定理 ,获得了Banach空间中一类混合型积分—微分方程边值问题解的存在性 。
4) Leray-Schauder fixed point theorem
Leray-Schauder不动点定理
1.
Then the existence and uniqueness of the weak solutions are given by means of Leray-Schauder fixed point theorem.
针对迁移率为m(x,t)的情形,通过引入Nirenberg不等式给出了解的有界性先验估计,并应用Leray-Schauder不动点定理证明了此类Cahn-Hilliard方程弱解的存在惟一性。
2.
A new proof of the Leray-Schauder fixed point theorem is established in this paper.
给出Leray-Schauder不动点定理的一个新证明。
5) Schauder-Tychonoff fixed point theorem
Schauder-Tychonoff不动点定理
1.
With Schauder-Tychonoff fixed point Theorem,this paper discusses the necessary and sufficient conditions where the third order quasilinear differential equation has specific no-oscillatory solutions under some special conditions.
利用Schauder-Tychonoff不动点定理讨论了一类三阶非线性微分方程在特殊条件下的最终正解存在的充分必要条件。
6) Leary-Schauder fixed point theorem
Leary-schauder不动点定理
补充资料:不动点定理
不动点定理 fixed-point theorem 如果f 是n+1维实心球Bn+1={x∈R n+1|x|≤1}到自身的连续映射(n=1,2,3…),则f 存在一个不动点x∈Bn+1(即满足f(x0)=x0)。此定理是L.E.J.布劳威在1911年证明的。不动点问题实际上就是各种各样的方程(如代数方程、微分方程、积分方程等 )的求解问题 ,在数学上非常重要,也有很多的实际应用。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条