1) schauder fixed point
Schauder不动点
1.
The proof uses Schauder fixed point theorem and upper and lower solutions method.
利用Schauder不动点理论和上下解方法,讨论了一类半正奇异二阶微分方程,在Neumann边值条件下受脉冲影响的正解存在性。
2) Leray-Schauder fixed point
Leray-Schauder不动点
1.
Using Leray-Schauder fixed point theorem,the existence of the non-negative periodic solution for a Class of differential equations with Multiple Delays are studied.
利用Leray-Schauder不动点定理,研究了一类非自治多时滞微分方程的非负周期解的存在性,得到了一些新的结果并改进了相应的结论。
3) Schauder fixed point theorem
Schauder不动点定理
1.
The existence of a time-periodic solution is proved by using the Galerkin method and the Leray-Schauder fixed point theorem.
本文对一类含扩散项和非齐次项的凝血系统,应用Galerkin方法和Leray-Schauder不动点定理证明了时间周期解的存在性。
2.
By using Laray-Schauder fixed point theorem,several existence theorems of solution are established for the class of equations.
通过应用Schauder不动点定理,得到了这类方程的解的几个存在性定理。
3.
The existence of solution for threepoint boundary value problem with a first order derivative and utmost growth nonlinearitiesx″(t)+f(t,x(t),x′(t))=0x′(0)=0,x(1)=αx(η)where f satisfies Caratheodory condition,α≠1,η∈(0,1),is proved by use of Schauder fixed point theorem.
应用Schauder不动点定理,讨论三点边值问题x(″t)+f(t,x(t),x(′t))=0x′(0)=0,x(1)=αx(η)解的存在性,其中α≠1,η∈(0,1),非线性项f满足Caratheodory条件和至多增长条件。
5) Leray-Schauder fixed point theorem
Leray-Schauder不动点定理
1.
Then the existence and uniqueness of the weak solutions are given by means of Leray-Schauder fixed point theorem.
针对迁移率为m(x,t)的情形,通过引入Nirenberg不等式给出了解的有界性先验估计,并应用Leray-Schauder不动点定理证明了此类Cahn-Hilliard方程弱解的存在惟一性。
2.
A new proof of the Leray-Schauder fixed point theorem is established in this paper.
给出Leray-Schauder不动点定理的一个新证明。
6) Schauder-Tychonoff fixed point theorem
Schauder-Tychonoff不动点定理
1.
With Schauder-Tychonoff fixed point Theorem,this paper discusses the necessary and sufficient conditions where the third order quasilinear differential equation has specific no-oscillatory solutions under some special conditions.
利用Schauder-Tychonoff不动点定理讨论了一类三阶非线性微分方程在特殊条件下的最终正解存在的充分必要条件。
补充资料:Borel不动点定理
Borel不动点定理
Borel fixed - point theorem
B吮l不动点定理{B.限l五xe小州nt价e僻m二匆卿,T侧邓吧,f.01”聊叉B“狱班滋n卜.王j 设F为代数闭域kl二非空完全代数簇,正则地作用于犷上的连通可解代数群G(见变换的代数群扭1罗-braic goup of transformat一ons))在卜中有不动点.由这个定理可以推出代数群的B.耽l子群(Borel sub-grouP)是共扼的(Bore卜MOI洲)叉)B定理(Borel一Moro-zov theorem)),不动点定理是A.Borel([lj)证明的.Borel定理可以推广到任意域k(不一定代数封闭卜设F为在域k上定义的完全簇若连通可解k分裂群(人一sPlit grouP)G正则地作用在F上,则有理人点集V(k)或者为空集,或者它包含G的一个不动点.因此推广的Bore]子群共扼性定理是:若域k是完满的,则一个连通人定义的代数群H的极大连通可解北可裂子群,在H的k点构成的群中元素作用下互相共辘(f21),
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条