说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Leray-Schauder不动点原理
1)  Leray-Schauder fixed point theorem
Leray-Schauder不动点原理
1.
The existence of a time-periodic solution is proved by the Galerkin method,Leray-Schauder fixed point theorem andpriori estimates.
利用伽辽金方法、Leray-Schauder不动点原理和先验估计,证明了在带周期外力扰动和周期边界条件的影响下,非线性发展Ginzburg-Landau方程ut=(l+iα)Δu-(k+iβ)u2u+γ+f的时间周期解,其中f(t,x)是一个关于时间变量t的以ω为周期的函数。
2.
We prove the existence of time-periodic solutions to the Galerkin problem by using Leray-Schauder fixed point theorem.
首先利用Leray-Schauder不动点原理证明Galerkin近似问题有时间周期解,然后利用先验估计和紧致性证明近似解是收敛的,并且其极限就是原来问题的时间周期解。
2)  Leray-Schauder fixed point theorem
Leray-Schauder不动点定理
1.
Then the existence and uniqueness of the weak solutions are given by means of Leray-Schauder fixed point theorem.
针对迁移率为m(x,t)的情形,通过引入Nirenberg不等式给出了解的有界性先验估计,并应用Leray-Schauder不动点定理证明了此类Cahn-Hilliard方程弱解的存在惟一性。
2.
A new proof of the Leray-Schauder fixed point theorem is established in this paper.
给出Leray-Schauder不动点定理的一个新证明。
3)  Leray-Schauder fixed point
Leray-Schauder不动点
1.
Using Leray-Schauder fixed point theorem,the existence of the non-negative periodic solution for a Class of differential equations with Multiple Delays are studied.
利用Leray-Schauder不动点定理,研究了一类非自治多时滞微分方程的非负周期解的存在性,得到了一些新的结果并改进了相应的结论。
4)  Leray-Schauder principle
Leray-Schauder原理
1.
The existence of solutions to the singular second-order boundary-value problem x″(t)=f(t,x(t))+e(t),0<t<1;x(0)=0,x(1)=∫01a(t)x(t)dt on C1[0,1) was taken into consideration by using Leray-Schauder principle.
运用Leray-Schauder原理考虑二阶奇异边值问题x″(t)=f(t,x(t),x′(t))+e(t),0
2.
We mainly use Leray-Schauder principle to abtain existence theorems for some classes of nonlinear higher-order two-point boundary value problems.
主要利用Leray-Schauder原理研究了几类高阶非线性两点边值问题解的存在性。
3.
On the base of the increasing nonlinear function and by using Leray-Schauder principle,the existence of the solution of a kind of fourth-order two-point bourdary value problem was discussed.
利用Leray-Schauder原理,在非线性增长条件下,讨论一类四阶两点边值问题的解的存在性。
5)  Leray-Schauder theorem
Leray-Schauder原理
1.
Based upon the Leray-Schauder theorem,it is concerned that the singular boundary value problem at the existence of a C~1[0,1) solution x″(t)=f(t,x(t),x′(t))+e(t),t∈(0,1),x′(0)=0,x(1)=kx(η).
运用Leray-Schauder原理考虑了二阶奇异边值问题x″(t)=f(t,x(t),x′(t))+e(t),t∈(0,1),x′(0)=0,x(1)=kx(η)在C1[0,1)上解的存在性。
2.
By using the Leray-Schauder theorem,the existence of solutions for three-point boundary value problems of a class of second order ordinary differential equation is obtained.
运用Leray-Schauder原理,获得了一类二阶非线性常微分方程三点边值问题解的存在性。
3.
By using Leray-Schauder theorem,the optimal sufficient conditions for the existence of the solution of the problemu(4)(t)=f(t,u(t),u″(t)),t∈(0,1)u′(0)=u′(1)=u(0)=u(1)=0are obtained.
应用Leray-Schauder原理,研究四阶两点边值问题u(4)(t)=f(t,u(t),u″(t)),t∈(0,1)u′(0)=u′(1)=u(0)=u(1)=0解的存在性,在两参数非共振条件以及非线性项f满足至多线性增长性条件下给出了此类问题有解存在的最优充分条件,最后举例说明了所获结果。
6)  Leray-Schauder theory
Leray-Schauder原理
1.
Using the Leray-Schauder theory and upper and lower solution method,the existence of solutions for general initial value problem of first order differential equationx′(t)=f(t,x(t)),a.
运用Leray-Schauder原理和上下解方法,讨论了一阶常微分方程广义初值问题x′(t)=f(t,x(t)), a e t∈[0,T],x(0)+∫T0a(t)x(t)dt=c解的存在性。
补充资料:机械原理:差动机构
差动机构
将两个有差异的或独立的运动合成为一个运动﹐或者将一个运动分解为两个有差异的运动的机构。差动机构有各种具体型式﹐可以用齿轮﹑螺旋﹑链条或钢索等组成﹐常用於汽车﹑拖拉机﹑起重机﹑测微器和天文仪器等中﹐起增力﹑微动﹑运动分解或合成﹑误差补偿等作用。如在链条差动滑轮中﹐由於重物Q 的提昇决定於P 点的上昇和P 点的下降运动之差﹐故称差动。如大﹑小链轮不固接在一起﹐则Q 的输出运动决定於P 和P 两个独立输入运动﹐遂成为一个2自由度机构。将链轮固接在一起﹐它就成为单自由度机构﹐这时P 和P 只有一个独立运动。将一个运动分解为两个运动的差动机构如汽车后桥差动轮系﹐它容许汽车在转弯时走弯道外圈的后轮比走内圈的转得快些﹐从而保证两轮都在地上滚动﹐避免擦伤轮胎。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条