1) Levay-Schauder fixed point theorem
Levay-Schauder不动点定理
1.
In this paper,the existence,nonexistence and uniqueness theorems of positive solutions to a class of semi-linear elliptic equations are proved by using the Levay-Schauder fixed point theorem and three lemmas.
在偏微分方程研究领域中,对半线性椭圆型方程边值问题的研究一直是主要研究方向之一,特别是半线性椭圆型方程边值问题正解的研究热点不断;该文利用Levay-Schauder不动点定理研究了一类半线性椭圆方程在有界正则域中正解的存在性、不存在性以及解的唯一性,作为定理的应用,给出了一个应用实例。
2) Schauder fixed point theorem
Schauder不动点定理
1.
The existence of a time-periodic solution is proved by using the Galerkin method and the Leray-Schauder fixed point theorem.
本文对一类含扩散项和非齐次项的凝血系统,应用Galerkin方法和Leray-Schauder不动点定理证明了时间周期解的存在性。
2.
By using Laray-Schauder fixed point theorem,several existence theorems of solution are established for the class of equations.
通过应用Schauder不动点定理,得到了这类方程的解的几个存在性定理。
3.
The existence of solution for threepoint boundary value problem with a first order derivative and utmost growth nonlinearitiesx″(t)+f(t,x(t),x′(t))=0x′(0)=0,x(1)=αx(η)where f satisfies Caratheodory condition,α≠1,η∈(0,1),is proved by use of Schauder fixed point theorem.
应用Schauder不动点定理,讨论三点边值问题x(″t)+f(t,x(t),x(′t))=0x′(0)=0,x(1)=αx(η)解的存在性,其中α≠1,η∈(0,1),非线性项f满足Caratheodory条件和至多增长条件。
4) Leray-Schauder fixed point theorem
Leray-Schauder不动点定理
1.
Then the existence and uniqueness of the weak solutions are given by means of Leray-Schauder fixed point theorem.
针对迁移率为m(x,t)的情形,通过引入Nirenberg不等式给出了解的有界性先验估计,并应用Leray-Schauder不动点定理证明了此类Cahn-Hilliard方程弱解的存在惟一性。
2.
A new proof of the Leray-Schauder fixed point theorem is established in this paper.
给出Leray-Schauder不动点定理的一个新证明。
5) Schauder-Tychonoff fixed point theorem
Schauder-Tychonoff不动点定理
1.
With Schauder-Tychonoff fixed point Theorem,this paper discusses the necessary and sufficient conditions where the third order quasilinear differential equation has specific no-oscillatory solutions under some special conditions.
利用Schauder-Tychonoff不动点定理讨论了一类三阶非线性微分方程在特殊条件下的最终正解存在的充分必要条件。
6) Leary-Schauder fixed point theorem
Leary-schauder不动点定理
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条