1) automorphism group
自同构群
1.
An analysis of sub-simple properties of automorphism groups by a computer;
自同构群的次单性分析及计算机实现
2.
The orders of automorphism groups of some families p-groups;
某一类家族p-群的自同构群的阶(英文)
2) automorphism
[英][,ɔ:tə'mɔ:fizəm] [美][,ɔtə'mɔrfɪzəm]
自同构群
1.
In this paper, we determine explicitly the automorphism of filirom Lie algebra W6, the solvable Lie algebra with nilradical W6, and prove that this solvable Lie algebra has no nontrivial (non-constant) invariant.
文章确定了filiform李代数W6的自同构群,确定了以W6为nil-根基的可解李代数及其唯一性,并且证明了这类可解李代数没有非平凡(即非常数)不变量。
2.
A finite p-group G is called LA-group, if the order of G divides the order of the automorphism group of G.
称有限p-群G是LA-群,如果群G的阶能整除群G的自同构群的阶。
3.
Abstract:Let G be a soluble block-transitive automorphism group of 2-(56,7,1) design D.
设G是设计2-(5~6,7,1)的一个可解区传递自同构群,则G是旗传递的且G■A■L(1,5~6)。
3) Automorphism groups
自同构群
1.
Holomorphic vectors and holomorphic automorphism groups of a sort of three-dimensional Hopf manifold;
一类三维Hopf流形的自同构群和全纯向量场
2.
In this paper,The order of automorphism groups of metacyclic inner abelian p-groups are determined when p≠2,and the structure of automorphism groups are also given.
本文确定了亚循环的内交换p-群(p≠2)的自同构群的阶,并给出了其自同构群的结构。
4) group of automorphisms
自同构群
1.
Meanwhile,the formula about number of order on the group of automorphisms over finitely generated module over Ring Fq[x] is deduced.
在特征为2的域F2上给出n阶矩阵为平方矩阵的充要条件,从而刻划了平方矩阵的特征,求出环Fq[x]上有限生成模的自同构群的阶数公式,由此得到F2上全体平方矩阵的计数公式。
5) outer automorphism group
外自同构群
1.
And their automorphism group sand outer automorphism groups are determined.
对任意奇素数p,引入了一类所谓的算术p-群,并确定了其自同构群和外自同构群,所得结果推广具有一个循环极大子群的p-群的相应结论。
2.
The outer automorphism group of the free product of two syclic groups is constructed, and two exact formulas for calculating its order are established.
具体地构造出两个有限循环群的自由积的外自同构群,并给出了其阶的计算公式。
3.
A formula of the order of the outer automorphism group of a semidirect product is obtained,which can be applied to the investigation of the triviality of the outer automorphism group.
设有限群 G=N H为半直积 ,本文借助于 N和 H的自同构求出了 G的外自同构群阶的公式 ,并给出了若干应用。
6) groups of all automorphisms
全自同构群
1.
According to the property and structure of generalized quaternion groups,using the methods of the extension theory of groups,the groups of all automorphisms of generalized quaternion group Q 4p and Q 4pm for odd prime p are determined,and the general structure of that of Q 4n deduced from that of Q 4p and Q 4pm is as follows:Suppose that p 1 is the smallest prime divisor of n,and n=p r .
根据广义四元群 Q4 n的结构和性质 ,利用群的扩张理论 ,先确定了 Q4 p与 Q4 pm的全自同构群的结构 ,由此归纳出一般的广义四元群 Q4 n的全自同构群的结构如下 :设 p1 为 n的最小素因子 ,n=pr1 1 pr22 … prkk 为 n的素数分解 ,那么(a)当 p1 >2时 ,Aut(G) =〈α〉:(〈η1 〉×〈η2 〉×…×〈ηk〉) ;(b)当 p1 =2时 ,Aut(G) =〈α〉:(〈η2 〉×…×〈ηk〉) , r1 =1〈α〉:(〈γ〉×〈η2 〉×…×〈ηk〉) , r1 =2〈α〉:(〈μ〉×〈ν〉×〈η2 〉×…×〈ηk〉) , r1 ≥ 3。
补充资料:曲线自同构
设c是亏格为g的光滑代数曲线。
如果f:c→c是双全纯映射(即f是双射,且f和它的逆映射f^(-1)都是全纯的),那么就称f是曲线c上的自同构。
曲线c的自同构群记为aut(c).
代数曲线理论告诉我们,aut(c)是一个有限阶的群。c上的魏尔斯特拉斯点在任何自同构群的作用下仍是魏尔斯特拉斯点。
如果c不是超椭圆曲线,那么aut(c)是全体魏尔斯特拉斯点对应的对称群中的子群。
关于自同构群的阶数,我们有著名的不等式:|aut(c)|<84(g-1).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条