1) Holomorphic automorphism group
全纯自同构群
1.
Holomorphic automorphism group of B_2×B_2;
B_2×B_2的全纯自同构群
2.
We obtain explicit formulas of the Bergman kernel functions and holomorphic automorphism groups on Hua-construction of the fourth type.
本文给出了第四类Hua结构的Bergman核函数及其全纯自同构群。
3.
Then,it obtaines the explicit forms it s Bergman metric and holomorphic automorphism group.
运用折叠原理和膨胀原理,先得到了Cm+n中Re inhardt域D(a,b,K;m,n)的Bergm an核函数,它是C2中Re-inhardt域D1(1,b,K;1,1)的一种推广,然后,又给出了它的Bergm an度量和全纯自同构群的显式表示,在最后,还讨论了它的一类全纯不变量及在全纯自同构群下不变的调和函数。
2) homomorphic automorphism
全纯自同构
1.
In this article,some requirements of homomorphic automorphism of the domain B~n×U~m were found by using the property that homomorphic automorphism turns the border into the border.
本文利用全纯自同构将边界映为边界的这一性质,得到了乘积域Bn×Um的全纯自同构的一些必要条件,再从这些必要条件出发,成功找到了乘积域Bn×Um的全部全纯自同构。
3) groups of all automorphisms
全自同构群
1.
According to the property and structure of generalized quaternion groups,using the methods of the extension theory of groups,the groups of all automorphisms of generalized quaternion group Q 4p and Q 4pm for odd prime p are determined,and the general structure of that of Q 4n deduced from that of Q 4p and Q 4pm is as follows:Suppose that p 1 is the smallest prime divisor of n,and n=p r .
根据广义四元群 Q4 n的结构和性质 ,利用群的扩张理论 ,先确定了 Q4 p与 Q4 pm的全自同构群的结构 ,由此归纳出一般的广义四元群 Q4 n的全自同构群的结构如下 :设 p1 为 n的最小素因子 ,n=pr1 1 pr22 … prkk 为 n的素数分解 ,那么(a)当 p1 >2时 ,Aut(G) =〈α〉:(〈η1 〉×〈η2 〉×…×〈ηk〉) ;(b)当 p1 =2时 ,Aut(G) =〈α〉:(〈η2 〉×…×〈ηk〉) , r1 =1〈α〉:(〈γ〉×〈η2 〉×…×〈ηk〉) , r1 =2〈α〉:(〈μ〉×〈ν〉×〈η2 〉×…×〈ηk〉) , r1 ≥ 3。
4) full automorphism group
全自同构群
1.
The following problem is considered:what kind of finite groups with pq 2 order can function as full automorphism group of a finite group?This paper describes the precise structure of the automorphism groups of order pq 2,where p and q are distinct primes.
考虑怎样的 pq2阶群可以作为另一个有限群的全自同构群 ,其中 p,q是不同的素数 。
2.
At first,This thesis determines the full automorphism groups of connected Cayley graphs of valency 4 of .
首先,本文决定了3p(p>3为素数)阶亚循环群的连通4度Cayleyr图的全自同构群结构,并由此得到这类图的CI性,正规性和弧传递性。
5) Periodic automorphism
周期全纯自同构
6) holomorphic automorphism
全纯自同构变换
补充资料:Frobenius自同构
Frobenius自同构
Frobenius automorphism
E旧映如.自同构〔Fro饭址璐a此加叼和即;中p川免“叮caa盯oMo,中。3MJ C司015群中的一个特殊形式的元素.它在类域论中起关键作用.设L是有限域K的代数扩张,则Fro-比苗璐自同构叭j;定义为甲别认a)二丫,其中a‘L,、二}月(K的元素个数).当L/K为有限扩张时,汽/K生成G司。is群C饱I(L/K).当L/K为无限扩张时,叭/K是G目(L/幻的拓扑生成元.若L〕EOK且IE:KJ<叭则汽厂:二叫众‘,. 设k为具有有限剩余类域工的局部域,K是k的非分歧扩张,则剩余类域扩张的助伙泊i、自同构牧,河以唯一地提升为自同构叭,‘C佃(K/k),,称为非分尽犷攀K/k单Fro恢而比自回汐·设}习一q,吸为K的整数环,p为叹的极大理想,则Fro灰川uS自同构伞叼*由下述条件唯一决定:对任一a‘叹有甄k(a)兰丫(modp).设K/k为局部域的任一Galo地扩张,任一自同构,任G司(K/k)若在K的最大非分歧子扩张上诱导出上述意义下的Froh泊i诏自同构,有时也称为K/k的Frobenius自同构. 设K/k为整体域的Ga】015扩张,p是k的素理想,平是K中在p之上的某一素理想.又设平在K中不分歧,蜘〔Gal(凡/气)是局部域非分歧扩张凡火的Fm-饮泪i璐自同构·如果将6司。is群Gal喝/气)与平在C透1(K/k)中的分解子群等同,则价可看作〔润(K/k)中的元素,这个元素称为对应素理想平的Fro沃浦出自同构.若K八为有限扩张,由取励Tape。密度定理(Che-加扭此v血砒ity小印n沈n)可知,对任一自同构。‘C恤l(K/k),存在无限个在K/k中不分歧的素理想瑕使。二,,.对任一A比l扩张,蜘仅依赖于p,这时价砰己为(p,K/k),称为素理想p的Artin符号(Anins卿比l).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条