1) Inner central automorphism group
中心内自同构群
2) central automorphism group
中心自同构群
3) inner automorphism group
内自同构群
1.
It is often very difficult to identify the structure of the automorphism group and the inner automorphism group of a group,and there is no general theory and method.
确定一个群的自同构群和内自同构群的结构往往十分困难,还没有一般性的理论及方法。
4) central automorphism
中心自同构
1.
The concept of Laffey automorphisms was introduced in this paper,and some of its properties were discussed,which generalized the corresponding results on the commuting automorphisms and central automorphisms in the bibliography.
引入了Laffey自同构的概念,讨论了Laffey自同构的一些性质,所得结果推广了文献中关于交换自同构及中心自同构的相应结论。
5) automorphism group
自同构群
1.
An analysis of sub-simple properties of automorphism groups by a computer;
自同构群的次单性分析及计算机实现
2.
The orders of automorphism groups of some families p-groups;
某一类家族p-群的自同构群的阶(英文)
6) Automorphism groups
自同构群
1.
Holomorphic vectors and holomorphic automorphism groups of a sort of three-dimensional Hopf manifold;
一类三维Hopf流形的自同构群和全纯向量场
2.
In this paper,The order of automorphism groups of metacyclic inner abelian p-groups are determined when p≠2,and the structure of automorphism groups are also given.
本文确定了亚循环的内交换p-群(p≠2)的自同构群的阶,并给出了其自同构群的结构。
补充资料:内自同构
内自同构
inner automorphisn
内自同构〔加姗.血腑叫和即;朋抑e朋戚~MoP-中H3MI,群G的 由某个固定元素g〔G按下式定义的自同构(aul泊-Inorphjsm)毋 伞(x)=g一’xg.G的所有内自同构的集合在G的全部自同构的群中形成正规子群;这子群同构于G/Z(G),这儿z(G)是G的中心(见群的中心(cenile ofagro叩)).不是内自同构的自同构称为外自同构(。uter auto扛旧r-Phism). 其他有关的概念,包括么半群的内自同构(川刃吧rautolnorPhjsm of a Inonoid)(具有单位元的半群),环的内自同构(~auto双幻rphism of a ring),都是用可逆元以类似的方法引进的. B .H.PeMee邢班侧以.撰【补注】设g是L记代数,x‘g是使ad(x)二夕曰tx,y]为幂零变换的元,则 exn(ad(x))一id+ad(x)+去ad(x)2+…定义了g的自同构.这样的自同构称为g的内自同构(~automorphism).更一般地,由它们生成的群int(g)中的元称为内自同构,该群是Aut(g)的正规子群. 若G为具有半单Lie代数的实或复Le群(Liegro叩),则内自同构恰好构成G的自同构群Aut(G)的单位连通分支.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条